p300 and cyclic AMP response element-binding protein (CBP) are adenoviral E1A-binding proteins involved in multiple cellular processes, and function as transcriptional co-factors and histone acetyltransferases. Germline mutation of CBP results in Rubinstein-Taybi syndrome, which is characterized by an increased predisposition to childhood malignancies. Furthermore, somatic mutations of p300 and CBP occur in a number of malignancies. Chromosome translocations target CBP and, less commonly, p300 in acute myeloid leukemia and treatmentrelated hematological disorders. p300 mutations in solid tumors result in truncated p300 protein products or amino-acid substitutions in critical protein domains, and these are often associated with inactivation of the second allele. A mouse model confirms that p300 and CBP function as suppressors of hematological tumor formation. The involvement of these proteins in critical tumorigenic pathways (including TGF-b, p53 and Rb) provides a mechanistic route as to how their inactivation could result in cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.