The formation of detected solar radio burst type II occurred was captured using Compound Astronomical Low Cost Frequency Spectrometer Transportable Observatory (CALLISTO) system which gives a better resolution of a wonderful image than other countries. The phenomenon was found on 2nd November 2014 at 09:39 [UT] in Switzerland. CALLISTO spectrometer device detects and traces a Coronal Mass Ejections (CMEs) phenomenon that causes the occurrence of the solar burst type II. As it happened, the drift rate of the solar radio burst Type II is calculated and discussed in details. Plasma frequency (fp), Langmuir waves and type II radiation relates each other in the establishment of this phenomenon. This paper presents a study of drift rate selected event of solar radio burst type II based on CMEs. The drift rate at this moment was about 3.2 MHz/s which has low drift rate thus the velocity OF THE CMEs was just about 695 km/s shown from NOAA.
The Moreton wave has been extensively studied in explaining the relation between solar flare, Coronal Mass Ejections (CMEs) and Solar Radio Solar Burst Type II (SRBT II) phenomena. The purpose of this study was to determine whether Moreton waves have an impact on CME structure based on SRBT II parameters. The drift rate and structures of 28 SRBT II events selected from year 2014 to 2017 and observed by using ground-based Compound Low-cost Low Frequency Transportable Observatory (CALLISTO) spectrometer were determined. The CME data such as width angle and velocity were obtained from Large Angle Spectroscopy Coronagraph Observatory (LASCO) instrument, while solar flare class and its Active Region (AR) were attained from the Geostationary Operational Environmental Satellite (GOES). From the results, impulsive CME events have X, M and C class of solar flare in the presence of Moreton wave by using GONG data archive while gradual CME were associated with C or B class of solar flare. Impulsive CMEs have an angle of width more than 60° and velocity more than 500 km/s associated with both herringbone (HB) and harmonic structure of SRBT II. However, 30% of gradual CMEs which are associated with HB structure of SRBT II did not accompany by Moreton wave presence. Therefore, we can deduce that the impulsive CMEs are formed under the influence of Moreton wave and gradual CMEs emerged without the Moreton wave, based on the structure of SRBT II.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.