Coronal Mass Ejections are significant solar events that involve intense explosions of magnetic fields and mass particles out from the corona. As the hot plasma are brought by the solar wind into the Earth’s magnetosphere, geomagnetic storm is generated and causing malfunctions in telecommunication and power systems. This study is aimed to investigate the distribution of flare-CMEs characteristics which occurred at the beginning phase of solar cycle 24, from Dec. 2008 until Dec. 2013. In the analysis, all events are classified according to their class of flares associated with the CMEs. The CMEs that are accompanied by A, B, and C flares are categorized as low group flare-CME, while CMEs with M and X flares are placed under high group flare-CME. Afterwards, they are analyzed to observe the distribution of their main CME properties; velocity, acceleration and angular width. At the end of the study, we found that velocity and angular width are the two properties that have high influential for high and low groups, with R value of 0.36 and 0.67, respectively. Most of high group flare-CMEs showed up in 360° as well as low group flare-CMEs if the associated minor flares lasted longer than 30 min. Furthermore, the speed range of 360° high and low class flare-CME cannot be defined from the results since all of them propagated at fluctuating velocity. Hence, it is believed that full halo CMEs have no velocity boundary as they can travel from 500 km/s and go beyond 2500 km/s.
The Moreton wave has been extensively studied in explaining the relation between solar flare, Coronal Mass Ejections (CMEs) and Solar Radio Solar Burst Type II (SRBT II) phenomena. The purpose of this study was to determine whether Moreton waves have an impact on CME structure based on SRBT II parameters. The drift rate and structures of 28 SRBT II events selected from year 2014 to 2017 and observed by using ground-based Compound Low-cost Low Frequency Transportable Observatory (CALLISTO) spectrometer were determined. The CME data such as width angle and velocity were obtained from Large Angle Spectroscopy Coronagraph Observatory (LASCO) instrument, while solar flare class and its Active Region (AR) were attained from the Geostationary Operational Environmental Satellite (GOES). From the results, impulsive CME events have X, M and C class of solar flare in the presence of Moreton wave by using GONG data archive while gradual CME were associated with C or B class of solar flare. Impulsive CMEs have an angle of width more than 60° and velocity more than 500 km/s associated with both herringbone (HB) and harmonic structure of SRBT II. However, 30% of gradual CMEs which are associated with HB structure of SRBT II did not accompany by Moreton wave presence. Therefore, we can deduce that the impulsive CMEs are formed under the influence of Moreton wave and gradual CMEs emerged without the Moreton wave, based on the structure of SRBT II.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.