In 2008, experiments have been carried out in ASDEX Upgrade to compare Hmode power threshold and confinement time in helium and deuterium. A scan in magnetic field and a wide density variation indicate that the threshold power in the two gases is very similar. The density dependence of the threshold exhibits a clear minimum. Confinement in helium is about 30% lower than in deuterium, mainly due to the reduction of the ion density caused by Z=2 in helium.
Abstract. On the way to a comprehensive understanding of the properties of a burning plasma the physics of super-thermal particles due to external heating and fusion reactions plays a key role. Especially Alfvén and Alfvén-acoustic type instabilities are predicted to strongly interact with the fast particle population and to contribute critically to the radial redistribution of the energetic ions. This paper focuses on the comparison of the kinetic dispersion relation for BAEs/GAMs [1] with numerical results obtained by the gyrokinetic eigenvalue code LIGKA [2] and experimental findings at ASDEX Upgrade. It is shown that thermal ions with a finite perpendicular energy (circulating and trapped) modify the dispersion relation significantly for low frequencies. The resulting frequency down-shift together with shaping and diamagnetic effects is crucial to explain the mode frequency as measured at ASDEX Upgrade stressing the importance of a kinetic description for frequencies comparable to the thermal ion transit frequency. In the second part the BAE frequency behaviour during a sawtooth-cycle is investigated and the possibility of an accurate q-profile determination via kinetic Alfvén spectroscopy is discussed.
We present here the first phase-space characterization of convective and diffusive energetic particle losses induced by shear Alfvén waves in a magnetically confined fusion plasma. While single toroidal Alfvén eigenmodes (TAE) and Alfvén cascades (AC) eject resonant fast ions in a convective process, an overlapping of AC and TAE spatial structures leads to a large fast-ion diffusion and loss. Diffusive fast-ion losses have been observed with a single TAE above a certain threshold in the fluctuation amplitude.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.