We present here the first phase-space characterization of convective and diffusive energetic particle losses induced by shear Alfvén waves in a magnetically confined fusion plasma. While single toroidal Alfvén eigenmodes (TAE) and Alfvén cascades (AC) eject resonant fast ions in a convective process, an overlapping of AC and TAE spatial structures leads to a large fast-ion diffusion and loss. Diffusive fast-ion losses have been observed with a single TAE above a certain threshold in the fluctuation amplitude.
The phase-space of convective and diffusive fast-ion losses induced by shear Alfvén eigenmodes has been characterized in the ASDEX Upgrade tokamak. Time-resolved energy and pitch-angle measurements of fast-ion losses correlated in frequency and phase with toroidal Alfvén eigenmodes (TAEs) and Alfvén cascades (ACs) have allowed to identify both loss mechanisms. While single ACs and TAEs eject resonant fast-ions in a convective process, the overlapping of AC and TAE spatial structures leads to a large fast-ion diffusion and loss. The threshold for diffusive fast-ion losses depends on the ion energy (gyroradius). Diffusive fast-ion losses with gyroradius ≈70 mm have been observed with a single TAE for local radial displacements of the magnetic field lines larger than ≈2 mm. Multiple frequency chirping ACs cause an enhancement of the diffusive losses. The ACs and TAEs radial structures have been reconstructed by means of cross-correlation techniques between the fast-ion loss detector and the electron cyclotron emission radiometer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.