Brain deterioration resulting from "protein folding" diseases, such as the Alzheimer's disease (AD), is one of the leading causes of morbidity and mortality in the aging human population. Heat shock proteins (Hsps) constitute the major cellular quality control system for proteins that mitigates the pathological burden of neurotoxic protein fibrils and aggregates. However, the therapeutic effect of Hsps has not been tested in a relevant setting. Here we report the dramatic neuroprotective effect of recombinant human Hsp70 in the bilateral olfactory bulbectomy model (OBX mice) and 5XFAD mouse models of neurodegeneration. We show that intranasally-administered Hsp70 rapidly enters the afflicted brain regions and mitigates multiple AD-like morphological and cognitive abnormalities observed in model animals. In particular, in both cases it normalizes the density of neurons in the hippocampus and cortex which correlates with the diminished accumulation of amyloid-β (Aβ) peptide and, in the case of 5XFAD mice, reduces Aβ plaque formation. Consistently, Hsp70 treatment also protects spatial memory in OBX and 5XFAD mice. These studies demonstrate that exogenous Hsp70 may be a practical therapeutic agent for treatment of neurodegenerative diseases associated with abnormal protein biogenesis and cognitive disturbances, such as AD, for which neuroprotective therapy is urgently needed.
Molecular chaperone Heat Shock Protein 70 (Hsp70) plays an important protective role in various neurodegenerative disorders often associated with aging, but its activity and availability in neuronal tissue decrease with age. Here we explored the effects of intranasal administration of exogenous recombinant human Hsp70 (eHsp70) on lifespan and neurological parameters in middle-aged and old mice. Long-term administration of eHsp70 significantly enhanced the lifespan of animals of different age groups. Behavioral assessment after 5 and 9 mo of chronic eHsp70 administration demonstrated improved learning and memory in old mice. Likewise, the investigation of locomotor and exploratory activities after eHsp70 treatment demonstrated a significant therapeutic effect of this chaperone. Measurements of synaptophysin show that eHsp70 treatment in old mice resulted in larger synaptophysin-immunopositive areas and higher neuron density compared with control animals. Furthermore, eHsp70 treatment decreased accumulation of lipofuscin, an aging-related marker, in the brain and enhanced proteasome activity. The potential of eHsp70 intranasal treatment to protect synaptic machinery in old animals offers a unique pharmacological approach for various neurodegenerative disorders associated with human aging.
Six weeks after bilateral olfactory bulbectomy, a peptide with molecular weight of 4 kD was revealed in extracts of the neocortex and hippocampus from mice. Using monoclonal antibodies 4G8, this peptide was identified as beta-amyloid. Its level was significantly higher in the bulbectomized animals than in sham-operated mice. The bulbectomized mice displayed sharp impairment in spatial memory when tested in the Morris water maze. The results suggest that bulbectomy initiates in the brain a pathological process similar to human Alzheimer's disease in location, biochemistry, and behavioral manifestations.
Activation of receptor for advanced glycation end products (RAGE) plays an essential role in the development of Alzheimer's disease (AD). It is known that the soluble isoform of the receptor binds to ligands and prevents negative effects of the receptor activation. We proposed that peptide fragments from RAGE prevent negative effects of the receptor activation during AD neurodegeneration. We have synthesized peptide fragments from surface-exposed regions of RAGE. Peptides were intranasally administrated into olfactory bulbectomized (OBX) mice, which developed some characteristics similar to AD neurodegeneration. We have found that only insertion of fragment (60-76) prevents the memory of OBX mice. Immunization of OBX mice with peptides showed that again only (60-76) peptide protected the memory of animals. Both intranasal insertion and immunization decreased the amyloid-β (Aβ) level in the brain. Activity of shortened fragments of (60-76) peptide was tested and showed only the (60-70) peptide is responsible for manifestation of activity. Intranasal administration of (60-76) peptide shows most protective effect on morpho-functional characteristics of neurons in the cortex and hippocampal areas. Using Flu-(60-76) peptide, we revealed its penetration in the brain of OBX mice as well as colocalization of Flu-labeled peptide with Aβ in the brain regions in transgenic mice. Flu-(60-76) peptide complex with trimer of Aβ was detected by SDS-PAGE. These data indicate that Aβ can be one of the molecular target of (60-70) peptide. These findings provide a new peptide molecule for design of anti-AD drug and for investigation of RAGE activation ways in progression of AD neurodegeneration.
Cognitive malfunction, synaptic dysfunction, and disconnections in neural networks are core deficits in Alzheimer's disease (AD). 5xFAD mice, a transgenic model of AD, are characterised by an enhanced level of amyloid-beta and abnormal neurotransmission. The dopaminergic (DA) system has been shown to be involved in amyloid-beta transformations and neuronal plasticity; however, its role in functional network changes in familial AD still remains unclear. In 5xFAD and non-transgenic freely moving mice, electroencephalograms (EEGs) were simultaneously recorded from the secondary motor cortex (MC), superficial layers of the hippocampal CA1 area (HPC), substantia nigra (SN), and ventral tegmental area (VTA). EEGs and their frequency spectra were analysed before and after systemic injection of a DA receptor agonist, apomorphine (APO). In the baseline EEG from MC and HPC of 5xFAD mice, delta and alpha oscillations were enhanced and beta activity was attenuated, compared to control mice. In VTA and SN of 5xFAD mice, delta-theta activity was decreased and beta oscillations dominated. In control mice, APO suppressed delta activity in VTA to a higher extent than in MC, whereas in 5xFAD mice, this difference was eliminated due to attenuation of the delta suppression in VTA. APO increased beta activity in MC of mice from both groups while significant beta suppression was observed in VTA of 5xFAD mice. These mice were characterized by significant decrease of tyrosine hydroxylase immunopositive cells in both VTA and SN and of DA transporter in MC and hippocampal dentate gyrus. We suggest that the EEG modifications observed in 5xFAD mice are associated with alterations in dopaminergic transmission, resulting in adaptive changes in the cerebral networks in the course of familial AD development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.