The recently uncovered problem of multi-point progressive blocking (MPB) has significantly increased the complexity of schedulability analysis of priority-preemptive wormhole networks-on-chip. While state-of-the-art analysis is currently deemed safe, there is still significant inherent pessimism when it comes to considering backpressure issues caused by downstream indirect interference. In this paper, we attempt to simplify the problem by considering a novel flow control protocol that can avoid backpressure issues, enabling simpler schedulability analysis approaches to be used. Rather than construct the analysis to fit the protocol, we modify the protocol so that effective analysis applies. We describe the changes to a baseline wormhole router in order to implement the proposed protocol, and comment on the impact on hardware overheads. We also examine the number of routers that actually require these changes. Comparative analysis of FPGA implementations show that the hardware overheads of the proposed NoC router are comparable or lower than those of the baseline, while analytical comparison shows that the proposed approach can guarantee schedulability in up to 77% more cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.