We present the first comprehensive set of lunar exospheric line width and line width derived effective temperatures as a function of lunar phase (66° waxing phase to 79° waning phase). Data were collected between November 2013 and May 2014 during six observing runs at the National Solar Observatory McMath‐Pierce Solar Telescope by applying high‐resolution Fabry‐Perot spectroscopy (R ~ 180,000) to observe emission from exospheric sodium (5,889.9509 Å, D2 line). The 3‐arc min field of view of the instrument, corresponding to ~336 km at the mean lunar distance (384,400 km), was positioned at several locations off the lunar limb; only equatorial observations taken out to 950 km are presented here. We find the sodium effective temperature distribution to be approximately a symmetric function of lunar phase with respect to full Moon. Within magnetotail passage we find temperatures in the range of 2500–9000 K. For phase angles greater than 40° we find that temperatures flatten out to ~1700 K.
Channel formation and branching is widely seen in physical systems where movement of fluid through a porous structure causes the spatiotemporal evolution of the medium. We provide a simple theoretical framework that embodies this feedback mechanism in a multiphase model for flow through a frangible porous medium with a dynamic permeability. Numerical simulations of the model show the emergence of branched networks whose topology is determined by the geometry of external flow forcing. This allows us to delineate the conditions under which splitting and/or coalescing branched network formation is favored, with potential implications for both understanding and controlling branching in soft frangible media.
We observed lunar exospheric potassium D1 (7,698.9646 Å) emissions using a high‐spectral resolution Fabry‐Perot spectrometer in 2014. We present the first potassium line profile measurements, which are representative of the potassium velocity distribution. Inferred temperatures are greater during the waxing gibbous phase, 1920±630 K and lower at waning gibbous phase, 980±200 K. Exosphere models suggest that the measured line widths are a combination of photon‐stimulated desorption and impact vaporization sources. The relative potassium emission intensity decreases by ∼2.5 between lunar phases 80° and 30° and is brightest off the northwest limb near the Aristarchus crater, which is a potassium‐rich surface region. Additionally, the emissions off the northern limb are brighter than the southern limb. The intensity decrease and the greater line width during the waxing gibbous versus the waning gibbous phase suggests a dawn‐dusk asymmetry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.