From 2007 to 2013, the globally averaged mole fraction of methane in the atmosphere increased by 5.7 ± 1.2 ppb yr À1. Simultaneously, δ 13 C CH4 (a measure of the 13 C/ 12 C isotope ratio in methane) has shifted to significantly more negative values since 2007. Growth was extreme in 2014, at 12.5 ± 0.4 ppb, with a further shift to more negative values being observed at most latitudes. The isotopic evidence presented here suggests that the methane rise was dominated by significant increases in biogenic methane emissions, particularly in the tropics, for example, from expansion of tropical wetlands in years with strongly positive rainfall anomalies or emissions from increased agricultural sources such as ruminants and rice paddies. Changes in the removal rate of methane by the OH radical have not been seen in other tracers of atmospheric chemistry and do not appear to explain short-term variations in methane. Fossil fuel emissions may also have grown, but the sustained shift to more 13 C-depleted values and its significant interannual variability, and the tropical and Southern Hemisphere loci of post-2007 growth, both indicate that fossil fuel emissions have not been the dominant factor driving the increase. A major cause of increased tropical wetland and tropical agricultural methane emissions, the likely major contributors to growth, may be their responses to meteorological change.
Atmospheric methane grew very rapidly in 2014 (12.7 ± 0.5 ppb/year), 2015 (10.1 ± 0.7 ppb/year), 2016 (7.0 ± 0.7 ppb/year), and 2017 (7.7 ± 0.7 ppb/year), at rates not observed since the 1980s. The increase in the methane burden began in 2007, with the mean global mole fraction in remote surface background air rising from about 1,775 ppb in 2006 to 1,850 ppb in 2017. Simultaneously the 13C/12C isotopic ratio (expressed as δ13CCH4) has shifted, now trending negative for more than a decade. The causes of methane's recent mole fraction increase are therefore either a change in the relative proportions (and totals) of emissions from biogenic and thermogenic and pyrogenic sources, especially in the tropics and subtropics, or a decline in the atmospheric sink of methane, or both. Unfortunately, with limited measurement data sets, it is not currently possible to be more definitive. The climate warming impact of the observed methane increase over the past decade, if continued at >5 ppb/year in the coming decades, is sufficient to challenge the Paris Agreement, which requires sharp cuts in the atmospheric methane burden. However, anthropogenic methane emissions are relatively very large and thus offer attractive targets for rapid reduction, which are essential if the Paris Agreement aims are to be attained.
[1] An off-line three-dimensional tropospheric chemical transport model, parallelTropospheric Off-Line Model of Chemistry and Transport (p-TOMCAT), has been extended by incorporating a detailed bromine chemistry scheme that contains gas-phase reactions and heterogeneous reactions on both cloud particles and background aerosols. Bromine emission from bromocarbon photo-oxidation and from sea-salt bromine depletion and bromine removal through dry and wet deposition are included. Using this model, tropospheric bromine chemistry and ozone budgets are studied. The zonal mean of the inorganic gas-phase bromine compounds (Br x ) is calculated to be high (4-8 pptv) in the lower troposphere of the midlatitudes to high latitudes in each hemisphere, with decreasing trends with altitude (down to $2-3 pptv in the upper troposphere). The lowest Br x (<2 pptv) is over low latitudes, corresponding to small sea-salt Br emission and a high rate of precipitation scavenging. A mean lifetime of $5 days is obtained for the tropospheric Br x . Sea-salt emission plays the dominant role in total Br x in the lower troposphere while organic Br-containing compounds are important in upper layers. High daytime BrO mixing ratios (>1 pptv) are found over the high-latitude ocean surface, corresponding to high tropospheric column BrO values of up to 1.6 Â 10 13 molecules/cm 2 in the monthly mean. The addition of bromine chemistry to the model leads to a reduction in tropospheric ozone amounts by 4-6% in the Northern Hemisphere and up to $30% in the Southern Hemisphere high latitudes. The net ozone loss depends not only on total Br x , but also on solar irradiance, especially at high latitudes. The hydrolysis reaction of bromine nitrate, which occurs on cloud and aerosol surfaces (BrONO 2 + H 2 O aq ! HOBr + HNO 3 ), has a significant influence on ozone chemistry through its effect on NO x as well as on reactive BrO and Br.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.