A new and convenient route to the regiocontrolled synthesis of a cellulose-based derivate copolymer (2,3-di-O-polycaprolactone-cellulose) grafting ε-caprolactone (ε-CL) from α-cellulose, cellulose-graft-polycaprolactone (cellulose-g-PCL), by a classical ring-opening polymerization (ROP) reaction, using stannous octoate (Sn(Oct) 2) as catalyst, in 68% concentration of zinc chloride aqueous solution at 120°C was presented. By controlling the hydroxyl of cellulose/ε-CL, catalyst/monomer ratio and the reaction time, the molecular architecture of the copolymers can be altered. The solubility of cellulose in zinc chloride aqueous was indicated by UV/VIS spectrometer and rheological measurements. The structures and thermal properties of cellulose-g-polycaprolactone copolymers were characterized using Fourier Transform Infrared (FT-IR), Proton Nuclear Magnetic Resonance Spectroscopy (1 H NMR), X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC) and Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). The interesting results confirm that zinc chloride solution can break the intra-molecular hydrogen bonds of cellulose selectively (not only O 3 H•••O 5 , but also O 2 H•••O 6), and has no effect on the inter-molecular hydrogen bonds (O 6 H•••O 3). And the grafting reactivity of hydroxyl on cellulose is C 2-OH > C 3-OH >> C 6-OH in zinc chloride solution, and this is clearly different from other researches. Most importantly, this work confirms that the method to regiocontrolled synthesis cellulose-based derivative polymers by regiobreaking hydrogen bonds is feasible. It is strongly believed that the new discovery may give a novel, environmental, simple and inexpensive method to modify cellulose chemically with various side chains grafted on a given hydroxyl, through liberating hydroxyl as reactive group from hydrogen bonds broken selectively by different solvents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.