Abstract:The first demonstration of a hollow core photonic bandgap fiber (HC-PBGF) suitable for high-rate data transmission in the 2 µm waveband is presented. The fiber has a record low loss for this wavelength region (4.5 dB/km at 1980 nm) and a >150 nm wide surface-mode-free transmission window at the center of the bandgap. Detailed analysis of the optical modes and their propagation along the fiber, carried out using a time-of-flight technique in conjunction with spatially and spectrally resolved (S 2 ) imaging, provides clear evidence that the HC-PBGF can be operated as quasi-single mode even though it supports up to four mode groups. Through the use of a custom built Thulium doped fiber amplifier with gain bandwidth closely matched to the fiber's low loss window, error-free 8 Gbit/s transmission in an optically amplified data channel at 2008 nm over 290 m of 19 cell HC-PBGF is reported.
Hollow-core-photonic-bandgap fiber, fabricated from high-purity synthetic silica, with a wide operating bandwidth between 3.1 and 3.7 μm, is reported. A minimum attenuation of 0.13 dB/m is achieved through a 19-cell core design with a thin core wall surround. The loss is reduced further to 0.05 dB/m following a purging process to remove hydrogen chloride gas from the fiber-representing more than an order of magnitude loss reduction as compared to previously reported bandgap-guiding fibers operating in the mid-infrared. The fiber also offers a low bend sensitivity of <0.25 dB per 5 cm diameter turn over a 300 nm bandwidth. Simulations are in good agreement with the achieved losses and indicate that a further loss reduction of more than a factor of 2 should be possible by enlarging the core using a 37-cell design.
Various simple anti-resonant, single cladding layer, hollow core fiber structures are examined. We show that the spacing between core and jacket glass and the shape of the support struts can be used to optimize confinement loss. We demonstrate the detrimental effect on confinement loss of thick nodes at the strut intersections and present a fabricated hexagram fiber that mitigates this effect in both straight and bent condition by presenting thin and radially elongated nodes. This fiber has loss comparable to published results for a first generation, multi-cladding ring, Kagome fiber with negative core curvature and has tolerable bend loss for many practical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.