Perioperative analgesic effects of oral firocoxib following cautery disbudding were investigated in preweaned calves. Twenty Holstein calves approximately 4 to 6wk old received a single oral dose of firocoxib, a nonsteroidal antiinflammatory, at 0.5mg/kg (n=10) or placebo (n=10) in a randomized controlled clinical trial. Responses, including ocular temperature determined by infrared thermography, pressure algometry measuring mechanical nociception threshold, and heart rate, were evaluated at 2, 4, 7, 8, and 24h after cornual nerve block and cautery disbudding. Blood samples were collected over 96h and analyzed for plasma cortisol and substance P concentrations by RIA. Additionally, ex vivo prostaglandin E2 concentrations were determined over a 72-h study period using an enzyme immunoassay. Data were analyzed using a linear mixed effects model with repeated measures. An inhibition of ex vivo prostaglandin E2 synthesis was observed from 12 to 48h following disbudding in calves treated with firocoxib. Cautery disbudding was associated with an increased nociception for the duration of sampling (24h). During the initial 24-h period following disbudding, no difference in response between treatment groups was noted. Following 24h, mean cortisol concentrations diverged between the 2 study groups with placebo-treated calves having increased cortisol concentrations at approximately 48h after disbudding. Furthermore, the overall integrated cortisol response as calculated as area under the effect curve tended to be reduced in firocoxib-treated calves. The prolonged effects of cautery dehorning require further investigation. Moreover, the effect of firocoxib on cortisol reduction observed in this study requires additional exploration.
Transportation stress can result in significant economic losses to producers due to decreased animal productivity and increased medication costs associated with sickness such as bovine respiratory disease (BRD). Meloxicam (MEL) provides pain relief and anti-inflammatory effects in cattle for several days after a single oral treatment. Our hypothesis was that MEL administration before shipping would reduce the impact of long-distance transportation on circulating physiological biomarkers of stress and inflammation in beef steers. Ninety-seven beef steers were blood sampled for baseline biomarker determination and then randomly assigned to receive either 1 mg/kg MEL (n = 49) or a placebo (CONT; n = 48) per os before a 1,316-km transportation event lasting approximately 16 h. Calves were then blood sampled on arrival and 5 d later. Changes in the hemogram, circulating plasma proteins, total carbon dioxide (TCO 2 ), fibrinogen, substance P (SP), cortisol, haptoglobin (Hp)-matrix metalloproteinase-9 (MMP-9) complexes, and tumor necrosis factor α (TNFα) between treatments over time were compared using a mixed effects model with statistical significance designated as P < 0.05. Analysis of covariance was conducted to assess the relationship between circulating MEL concentrations and biomarker changes over time. An increase in neutrophil, platelet, monocyte, white blood cell, and red blood cell counts occurred after transportation (P < 0.0001) and a decrease in lymphocyte count were observed (P < 0.0001). Meloxicam treatment reduced the stress-induced neutrophilia (P = 0.0072) and circulating monocyte count (P = 0.013) on arrival. Mean corpuscle hemoglobin (P = 0.05), mean corpuscle volume (P = 0.05), and lymphocyte count (P = 0.05) were also greater in the CONT calves compared with MEL calves after transportation. Furthermore, Hp-MMP-9 complexes, TCO 2 , TNFα, plasma proteins, and SP increased and cortisol decreased after shipping (P < 0.01). Meloxicam treatment tended to reduce serum cortisol concentrations (P = 0.08) and there was evidence of a time × treatment interaction (P = 0.04). An inverse relationship between plasma MEL concentrations and circulation cortisol concentrations (P = 0.002) and neutrophil (P = 0.04) and basophil counts (P = 0.03) was also observed. The results suggest that MEL administration may reduce the impact of long-distance transportation on circulating physiological biomarkers of stress and inflammation in beef calves. ABSTRACT: Transportation stress can result in significant economic losses to producers due to decreased animal productivity and increased medication costs associated with sickness such as bovine respiratory disease (BRD). Meloxicam (MEL) provides pain relief and anti-inflammatory effects in cattle for several days after a single oral treatment. Our hypothesis was that MEL administration before shipping would reduce the impact of long-distance transportation on circulating physiological biomarkers of stress and inflammation in beef steers. Ninety-seven beef steers were b...
This study describes the pharmacokinetics of topical and intravenous (IV) flunixin meglumine in Holstein calves. Eight male Holsteins calves, aged 6 to 8 weeks, were administered flunixin at a dose of 2.2 mg/kg intravenously. Following a 10-day washout period, calves were dosed with flunixin at 3.33 mg/kg topically (transdermal). Blood samples were collected at predetermined times from 0 to 48 h for the intravenous portions and 0 to 72 h following topical dosing. Plasma drug concentrations were determined using liquid chromatography with mass spectroscopy. Pharmacokinetic analysis was completed using noncompartmental methods. The mean bioavailability of topical flunixin was calculated to be 48%. The mean AUC for flunixin was determined to be 13.9 h × ug/mL for IV administration and 10.1 h × ug/mL for topical administration. The mean half-life for topical flunixin was 6.42 h and 4.99 h for the intravenous route. The C following topical application of flunixin was 1.17 μg/mL. The time to maximum concentration was 2.14 h. Mean residence time (MRT) following IV injection was 4.38 h and 8.36 h after topical administration. In conclusion, flunixin when administered as a topical preparation is rapidly absorbed and has longer half-life compared to IV administration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.