An experimental investigation was designed to establish the distribution of mechanical properties throughout a high-density polyethylene (HDPE) gas pipe wall. The proposed approach used a continuous and uniform filament that was automatically machined from the pipe on a precision lathe at a very low cutting speed and an optimal depth of cut to minimize heating and structural disturbances. Typical engineering stress-strain curves, in every layer, were obtained on a testing machine especially designed for polymers, and they were statistically analyzed. The stress-strain behavior of HDPE pipe material could basically be divided into three distinctive zones, the second of which remained important. The average stress level illustrating cold drawing for a given layer was almost constant throughout the pipe wall. The measured stresses and moduli correlated very well with the pipe thickness, and they increased from the outer layers toward the inner layers. This was explained by the crystallinity evolution because the pipe production process was based on a convective watercooling system with a temperature gradient, which generated residual stresses. Computed statistical stress-strain correlations at yielding, the onset of cold drawing, and fracture points revealed acceptable linear relations for an error level of p Յ 0.05. On the other hand, an increasing linear correlation characterized the relationship of the yield stress and elastic modulus. This result was confirmed by literature for standard specimens, prepared by compression molding, that did not represent an actual pipe structure with respect to an extrusion thermomechanical history. Such an approach to mechanical property variability within an HDPE pipe wall highlighted the complexity of the hierarchical structure behavior in terms of stress-strain and long-term brittle failure.
L'objectif de cetteétude expérimentale est d'établir la distribution des propriétés mécaniques et morphologiquesà travers la paroi d'un tube de transport du gaz naturel en polyéthylène de haute densité (HDPE). L'approche proposée utilise un filament continu et uniforme, automatiquement usiné du tubeà faible vitesse de coupe età profondeur de passe optimale afin de réduire le flux de chaleur ainsi que les modifications structurales. Des courbes typiques (σ-ε), dans chaque couche, sont obtenues sur une machine d'essai conçue pour les polymères et sont statistiquement analysées. Elles montrent que le comportement mécanique du tube en HDPE est pratiquement divisé en 3 zones distinctes dont la seconde reste la plusétendue. Le niveau de contrainte moyen exprimant l'étirageà froid pour une couche donnée est presque constantà travers l'épaisseur du tube. Les contraintes et le module d'élasticité donnent de très bonnes corrélations avec l'épaisseur indiquant une augmentation de la surface externe vers les couches internes. Ceci est expliqué par l'évolution de cristallinité durant le procédé de production faisant appel a un refroidissementéchelonné dans le temps et qui génère des contraintes résiduelles. Les corrélations statistiquesà l'écoulement plastique, au début de l'étirageà froid età la rupture indiquent des relations linéaires acceptables pour une probabilité d'erreur p ≤ 0,05. D'autre part, une corrélation linéaire croissante caractérise la relation entre la contrainte limite et le module d'élasticité. Ce résultat est confirmé dans la littérature pour deséprouvettes standards obtenues par moulage en compression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.