To verify the provisions stated by V.I. Bogomolov, B.I. Puzanov. and Linevich E.I. about the possibility of performing over-unit work by inertial forces, a closed mechanical system in the form of kinematically connected rotating masses is proposed for consideration. The research aimed, within the framework of Newtonian mechanics, to study the fulfillment of the laws of conservation of momentum, angular momentum and energy, to establish the possibility of performing work by inertial forces (centrifugal and Coriolis), to assess the change in kinetic parameters using the example of the Chelomey pendulum model. For the complex radial-circular motion of the masses of the Chelomey pendulum model, resolving equations are obtained. To verify the analytical calculations, algorithms for numerical solutions of the above problems have been developed and implemented in the MathCAD software package
Abstract. To verify the provisions stated by V.I. Bogomolov, B.I. Puzanov. and Linevich E.I. about the possibility of performing over-unit work by inertial forces, a closed mechanical system in the form of kinematically connected rotating masses is proposed for consideration. The research aimed, within the framework of Newtonian mechanics, to study the fulfillment of the laws of conservation of momentum, angular momentum and energy, to establish the possibility of performing work by inertial forces (centrifugal and Coriolis), to assess the change in kinetic parameters using the example of the Chelomey pendulum model. For the complex radial-circular motion of the masses of the Chelomey pendulum model, resolving equations are obtained. To verify the analytical calculations, algorithms for numerical solutions of the above problems have been developed and implemented in the MathCAD software package.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.