We present the results of an extensive high-resolution imaging survey of M-dwarf multiplicity using the Lucky Imaging technique. The survey made use of the AstraLux Norte camera at the Calar Alto 2.2m telescope and the AstraLux Sur camera at the ESO New Technology Telescope in order to cover nearly the full sky. In total, 761 stars were observed (701 M-type and 60 late K-type), among which 182 new and 37 previously known companions were detected in 205 systems. Most of the targets have been observed during two or more epochs, and could be confirmed as physical companions through common proper motion, often with orbital motion being confirmed in addition. After accounting for various bias effects, we find a total M-dwarf multiplicity fraction of 27 ± 3% within the AstraLux detection range of 0.08-6 ′′ (semi-major axes of ∼3-227 AU at a median distance of 30 pc). We examine various statistical multiplicity properties within the sample, such as the trend of multiplicity fraction with stellar mass and the semi-major axis distribution. The results indicate that M-dwarfs are largely consistent with constituting an intermediate step in a continuous distribution from higher-mass stars down to brown dwarfs. Along with other observational results in the literature, this provides further indications that stars and brown dwarfs may share a common formation mechanism, rather than being distinct populations.
Observed properties of stars and planets in binary/multiple star systems provide clues to planet formation and evolution. We extended our survey for visual stellar companions to the hosts of transiting exoplanets by 21 stars, using the Lucky Imaging technique with the two AstraLux instruments: AstraLux Norte at the Calar Alto 2.2-m telescope, and AstraLux Sur at the ESO 3.5-m New Technology Telescope at La Silla. Typically a sensitivity to companions of magnitude difference ∆z ′ ≈ 4 is achieved at angular separation ρ = 0.5 ′′ and ∆z ′ 6 for ρ = 1 ′′ .We present observations of two previously unknown binary candidate companions, to the transiting planet host stars HAT-P-8 and WASP-12, and derive photometric and astrometric properties of the companion candidates. The common proper motions of the previously discovered companion candidates with the exoplanet host stars TrES-4 and WASP-2 are confirmed from follow-up observations. A Bayesian statistical analysis of 31 transiting exoplanet host stars observed with AstraLux suggests that the companion star fraction of planet hosts is not significantly different from that of solar-type field stars, but that the binary separation is on average larger for planet host stars.
We present a new method to determine the age spread of resolved stellar populations in a starburst cluster. The method relies on a two-step process. In the first step, kinematic members of the cluster are identified based on multi-epoch astrometric monitoring. In the second step, a Bayesian analysis is carried out, comparing the observed photometric sequence of cluster members with sets of theoretical isochrones. When applying this methodology to optical and near-infrared high angular resolution Hubble Space Telescope (HST) and adaptive optics observations of the ∼5 Myr old starburst cluster Westerlund 1 and ∼2 Myr old starburst cluster NGC 3603 YC, we derive upper limits for the age spreads of 0.4 and 0.1 Myr, respectively. The results strongly suggest that star formation in these starburst clusters happened almost instantaneously.
We present near-infrared multi-object spectroscopy and JHK s imaging of the massive stellar content of the Galactic star-forming region W3 Main, obtained with LUCI at the Large Binocular Telescope. We confirm 15 OB stars in W3 Main and derive spectral types between O5V and B4V from their absorption line spectra. Three massive Young Stellar Objects are identified by their emission line spectra and near-infrared excess. The color-color diagram of the detected sources allows a detailed investigation of the slope of the near-infrared extinction law towards W3 Main. Analysis of the Hertzsprung Russell diagram suggests that the Nishiyama extinction law fits the stellar population of W3 Main best (E(J −H)/E(H −K s ) = 1.76 and R Ks = 1.44). From our spectrophotometric analysis of the massive stars and the nature of their surrounding Hii regions we derive the evolutionary sequence of W3 Main and we find evidence of an age spread of at least 2-3 Myr. While the most massive star (IRS2) is already evolved, indications for high-mass pre-main-sequence evolution is found for another star (IRS N1), deeply embedded in an ultra compact Hii region, in line with the different evolutionary phases observed in the corresponding Hii regions. We derive a stellar mass of W3 Main of (4 ± 1) × 10 3 M ⊙ , by extrapolating from the number of OB stars using a Kroupa IMF and correcting for our spectroscopic incompleteness. We have detected the photospheres of OB stars from the more evolved diffuse Hii region to the much younger UCHii regions, suggesting that these stars have finished their formation and cleared away their circumstellar disks very fast. Only in the hyper-compact Hii region (IRS5), the early type stars seem to be still surrounded by circumstellar material.
The distribution of multiplicity among low-mass stars is a key issue to understanding the formation of stars and brown dwarfs, and recent surveys have yielded large enough samples of nearby low-mass stars to study this issue statistically to good accuracy. Previously, we have presented a multiplicity study of ∼700 early/mid M-type stars observed with the AstraLux high-resolution Lucky Imaging cameras. Here, we extend the study of multiplicity in M-type stars through studying 286 nearby mid/late M-type stars, bridging the gap between our previous study and multiplicity studies of brown dwarfs. Most of the targets have been observed more than once, allowing us to assess common proper motion to confirm companionship. We detect 68 confirmed or probable companions in 66 systems, of which 41 were previously undiscovered. Detections are made down to the resolution limit of ∼100 mas of the instrument. The raw multiplicity in the AstraLux sensitivity range is 17.9%, leading to a total multiplicity fraction of 21-27% depending on the mass ratio distribution, which is consistent with being flat down to mass ratios of ∼0.4, but cannot be stringently constrained below this value. The semi-major axis distribution is well represented by a log-normal function with µ a = 0.78 and σ a = 0.47, which is narrower and peaked at smaller separations than for a Sun-like sample. This is consistent with a steady decrease in average semi-major axis from the highest-mass binary stars to the brown dwarf binaries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.