Agrobacterium -mediated transformation of shoot apices of sunflower (Helianthus annuus L.) was evaluated following wounding by cell-wall-digesting enzymes and sonication. The frequency of explants with regenerated shoots expressing GUS (beta-glucuronidase) or GFP (green fluorescent protein) increased following treatment with the macerating enzymes cellulase Onozuka R-10 and pectinase Boerozym M5, whereas treatment with macerozyme R-10 had a negative effect. When a combination of cellulase (0.1%) and pectinase (0.05%) was used, the rate of explants with uniformly GUS-positive shoots increased at least twofold. The transient expression of reporter genes was also enhanced using sonication (50 MHz; 2, 4 and 6 s), but stable expression in regenerated shoots following 4 weeks of selection did not increase with this treatment. Enzyme treatment alone (0.1% cellulase and 0.05% pectinase) was superior to a combined treatment of sonication and enzymes with respect to stable transformation. Polymerase chain reaction analyses of shoots recovered by grafting from transformation experiments using GFP as the reporter gene demonstrated the stable integration of the transgene. Regenerated plants were fertile and seeds could be harvested.
Industrial production of semi-synthetic cephalosporins by Penicillium chrysogenum requires supplementation of the growth media with the side-chain precursor adipic acid. In glucose-limited chemostat cultures of P. chrysogenum, up to 88% of the consumed adipic acid was not recovered in cephalosporin-related products, but used as an additional carbon and energy source for growth. This low efficiency of side-chain precursor incorporation provides an economic incentive for studying and engineering the metabolism of adipic acid in P. chrysogenum. Chemostat-based transcriptome analysis in the presence and absence of adipic acid confirmed that adipic acid metabolism in this fungus occurs via β-oxidation. A set of 52 adipate-responsive genes included six putative genes for acyl-CoA oxidases and dehydrogenases, enzymes responsible for the first step of β-oxidation. Subcellular localization of the differentially expressed acyl-CoA oxidases and dehydrogenases revealed that the oxidases were exclusively targeted to peroxisomes, while the dehydrogenases were found either in peroxisomes or in mitochondria. Deletion of the genes encoding the peroxisomal acyl-CoA oxidase Pc20g01800 and the mitochondrial acyl-CoA dehydrogenase Pc20g07920 resulted in a 1.6- and 3.7-fold increase in the production of the semi-synthetic cephalosporin intermediate adipoyl-6-APA, respectively. The deletion strains also showed reduced adipate consumption compared to the reference strain, indicating that engineering of the first step of β-oxidation successfully redirected a larger fraction of adipic acid towards cephalosporin biosynthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.