We demonstrate what is to our knowledge the first mode-locked Yb:KGd(WO(4))(2) laser. Using a semiconductor saturable-absorber mirror for passive mode locking, we obtain pulses of 176-fs duration with an average power of 1.1 W and a peak power of 64 kW at a center wavelength of 1037 nm. We achieve pulses as short as 112 fs at a lower output power. The laser is based on a standard delta cavity and pumped by two high-brightness laser diodes, making the whole system very simple and compact. Tuning the laser by means of a knife-edge results in mode-locked pulses within a wavelength range from 1032 to 1054 nm. In cw operation, we achieve output powers as high as 1.3 W.
In the EU there is an increasing need for regulatory agencies to derive health based threshold limits based on human inhalation studies with airborne particles. A necessary prerequisite for such projects is the development of a suitable generator system to produce nanoparticle test aerosols for human whole-body inhalation studies. We decided to use a generator with flame-based heating of aqueous precursor solutions. Validation of the test system was done by generating zinc oxide (ZnO) nanoparticles with minimal contamination of trace gases, i.e., nitric oxides or carbon monoxide that could confound the effects seen in exposed subjects. ZnO was selected based on the uncertainties surrounding its health effects after exposure at the workplace. The generation process of the developed flame generator yields ZnO nanoparticles with monomodal size distribution and very good temporal stability. The maximum target exposure mass concentration of 2 mg/m 3 ZnO, with a resulting median particle diameter of 57 nm, is attainable in our human exposure laboratory. The morphological examination shows typical agglomerates and aggregates formed by high temperature processes. Overall, the performed experiments confirm that a constant exposure can be provided for all subjects at all times.
We investigate the potential of large optical cavity (LOC)-laser structures for AlGaInP high-power lasers. For that we study large series of broad area lasers with varying waveguide widths to obtain statistically relevant data. We study in detail I/sub th/, /spl alpha//sub i/, /spl eta//sub i/, and P/sub max/, and analyze above-threshold behavior including temperature stability and leakage current. We got as expected for LOC structures minimal /spl alpha//sub i//spl les/1 cm/sup -1/ resulting in /spl eta//sup d/=1.1 W/A for 64/spl times/2000 /spl mu/m/sup 2/ uncoated devices. We obtain total output powers /spl ges/3.2 W (qCW) and /spl ges/1.5 W (CW) at 20/spl deg/C
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.