Atlastin, a member of the dynamin superfamily, is known to catalyse homotypic membrane fusion in the smooth endoplasmic reticulum (ER). Recent studies of atlastin have elucidated key features about its structure and function; however, several mechanistic details, including the catalytic mechanism and GTP hydrolysis-driven conformational changes, are yet to be determined. Here, we present the crystal structures of atlastin-1 bound to GDP AlF 4 À and GppNHp, uncovering an intramolecular arginine finger that stimulates GTP hydrolysis when correctly oriented through rearrangements within the G domain. Utilizing Förster Resonance Energy Transfer, we describe nucleotide binding and hydrolysis-driven conformational changes in atlastin and their sequence. Furthermore, we discovered a nucleotide exchange mechanism that is intrinsic to atlastin's N-terminal domains. Our results indicate that the cytoplasmic domain of atlastin acts as a tether and homotypic interactions are timed by GTP binding and hydrolysis. Perturbation of these mechanisms may be implicated in a group of atlastin-associated hereditary neurodegenerative diseases.
Organellar ion channels are essential for cell physiology. Their activities are often regulated by Ca2+ and H+, which are concentrated in many organelles. Here we report a novel structural element critical for Ca2+/pH dual regulation of TRPML1, a Ca2+ release channel crucial for endolysosomal functions. TRPML1 mutations cause mucolipidosis type IV (MLIV), a severe lysosomal storage disorder characterized by neurodegeneration, mental retardation and blindness. We obtained high-resolution crystal structures of a 213-amino acid luminal domain of human TRPML1 that harbors three missense MLIV-causing mutations. This domain forms a tetramer with a highly electronegative central pore formed by a novel luminal pore-loop. Cysteine crosslinking and cryo-EM confirm this structure in the full-length channel. Structure-function studies demonstrate that Ca2+ and H+ interact with the luminal pore to exert physiologically important regulation. The MLIV-causing mutations disrupt the luminal domain structure and cause TRPML1 mislocalization. Our study provides a structural underpinning for TRPML1's regulation, assembly and pathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.