We report measurements of the optical gap in a GdN film at temperatures from
300 to 6K, covering both the paramagnetic and ferromagnetic phases. The gap is
1.31eV in the paramagnetic phase and red-shifts to 0.9eV in the spin-split
bands below the Curie temperature. The paramagnetic gap is larger than was
suggested by very early experiments, and has permitted us to refine a
(LSDA+U)-computed band structure. The band structure was computed in the full
translation symmetry of the ferromagnetic ground state, assigning the
paramagnetic-state gap as the average of the majority- and minority-spin gaps
in the ferromagnetic state. That procedure has been further tested by a band
structure in a 32-atom supercell with randomly-oriented spins. After fitting
only the paramagnetic gap the refined band structure then reproduces our
measured gaps in both phases by direct transitions at the X point.Comment: 5 pages, 4 figure
The addition of dysprosium oxide nanoparticles is shown to improve the critical current in perpendicular magnetic fields for second-generation (2G) wire formed by metal-organic deposition (MOD). Typical enhancements in J c are from 0.17 MA cm −2 to over 0.33 MA cm −2 at 77 K and B perp = 1.5 T. TEM analysis shows that we are introducing (Y, Dy) 2 O 3 nanoparticles with dimensions of 10-50 nm. A simple theoretical analysis shows that the maximum pinning effect for additions is expected at excess concentrations of approximately 70% DyO 1.5 , i.e. for YBa 2 Cu 3 O 7−δ + 0.7DyO 1.5 if the added nanoparticles are randomly dispersed and a strong pinning model is valid. An interesting feature is that the critical current in parallel field is reduced in these samples. We present evidence that shows this may be due to reduced planar defects in the YBCO.
A cryogenic electrical transport measurement system is described that is particularly designed to meet the requirements for routine and effective characterization of commercial second generation high-temperature superconducting (HTS) wires in the form of coated conductors based on YBa2Cu3O7. Specific design parameters include a base temperature of 20 K, an applied magnetic field capability of 8 T (provided by a HTS split-coil magnet), and a measurement current capacity approaching 1 kA. The system accommodates samples up to 12 mm in width (the widest conductor size presently commercially available) and 40 mm long, although this is not a limiting size. The sample is able to be rotated freely with respect to the magnetic field direction about an axis parallel to the current flow, producing field angle variations in the standard maximum Lorentz force configuration. The system is completely free of liquid cryogens for both sample cooling and magnet cool-down and operation. Software enables the system to conduct a full characterization of the temperature, magnetic field, and field angle dependence of the critical current of a sample without any user interaction. The system has successfully been used to measure a wide range of experimental and commercially-available superconducting wire samples sourced from different manufacturers across the full range of operating conditions. The system encapsulates significant advances in HTS magnet design and efficient cryogen-free cooling technologies together with the capability for routine and automated high-current electrical transport measurements at cryogenic temperatures. It will be of interest to both research scientists investigating superconductor behavior and commercial wire manufacturers seeking to accurately characterize the performance of their product under all desired operating conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.