Amoebae explore their environment in a random way, unless external cues like, e.g., nutrients, bias their motion. Even in the absence of cues, however, experimental cell tracks show some degree of persistence. In this paper, we analyzed individual cell tracks in the framework of a linear mixed effects model, where each track is modeled by a fractional Brownian motion, i.e., a Gaussian process exhibiting a long-term correlation structure superposed on a linear trend. The degree of persistence was quantified by the Hurst exponent of fractional Brownian motion. Our analysis of experimental cell tracks of the amoeba Dictyostelium discoideum showed a persistent movement for the majority of tracks. Employing a sliding window approach, we estimated the variations of the Hurst exponent over time, which allowed us to identify points in time, where the correlation structure was distorted ("outliers"). Coarse graining of track data via down-sampling allowed us to identify the dependence of persistence on the spatial scale. While one would expect the (mode of the) Hurst exponent to be constant on different temporal scales due to the self-similarity property of fractional Brownian motion, we observed a trend towards stronger persistence for the down-sampled cell tracks indicating stronger persistence on larger time scales.
Abstract. The aim of this paper is to estimate the Hurst parameter of Fractional Gaussian Noise (FGN) using Bayesian inference. We propose an estimation technique that takes into account the full correlation structure of this process. Instead of using the integrated time series and then applying an estimator for its Hurst exponent, we propose to use the noise signal directly. As an application we analyze the time series of the Nile River, where we find a posterior distribution which is compatible with previous findings. In addition, our technique provides natural error bars for the Hurst exponent.
The Kalman filter is an established tool for the analysis of dynamic systems with normally distributed noise, and it has been successfully applied in numerous application areas. It provides sequentially calculated estimates of the system states along with a corresponding covariance matrix. For nonlinear systems, the extended Kalman filter is often used which is derived from the Kalman filter by linearization around the current estimate. A key issue in metrology is the evaluation of the uncertainty associated with the Kalman filter state estimates. The "Guide to the Expression of Uncertainty in Measurements" (GUM) and its supplements serve as the de facto standard for uncertainty evaluation in metrology. We explore the relationship between the covariance matrix produced by the Kalman filter and a GUM-compliant uncertainty analysis. In addition, also the results of a Bayesian analysis are considered. For the case of linear systems with known system matrices, we show that all three approaches are compatible. When the system matrices are not precisely known, however, or when the system is nonlinear, this equivalence breaks down and different results can be reached then. Though for precisely known nonlinear systems the result of the extended Kalman filter still corresponds to the linearized uncertainty propagation of GUM. The extended Kalman filter can suffer from linearization and convergence errors. These disadvantages can be avoided to some extent by applying Monte Carlo procedures, and we propose such a method which is GUMcompliant and can also be applied online during the estimation. We illustrate all procedures in terms of a two-dimensional dynamic system and compare the results with those obtained by particle filtering, which has been proposed for the approximate calculation of a Bayesian solution. Finally, we give some recommendations based on our findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.