State‐of‐the‐art health care includes genome sequencing of the patient to identify genetic variants that contribute to either the cause of their malady or variants that can be targeted to improve treatment. The goal was to introduce state‐of‐the‐art health care to cats using genomics and a precision medicine approach. To test the feasibility of a precision medicine approach in domestic cats, a single cat that presented to the University of Missouri, Veterinary Health Center with an undiagnosed neurologic disease was whole‐genome sequenced. The DNA variants from the cat were compared to the DNA variant database produced by the 99 Lives Cat Genome Sequencing Consortium. Approximately 25× genomic coverage was produced for the cat. A predicted p.H441P missense mutation was identified in NPC1, the gene causing Niemann‐Pick type C1 on cat chromosome D3.47456793 caused by an adenine‐to‐cytosine transversion, c.1322A>C. The cat was homozygous for the variant. The variant was not identified in any other 73 domestic and 9 wild felids in the sequence database or 190 additionally genotyped cats of various breeds. The successful effort suggested precision medicine is feasible for cats and other undiagnosed cats may benefit from a genomic analysis approach. The 99 Lives DNA variant database was sufficient but would benefit from additional cat sequences. Other cats with the mutation may be identified and could be introduced as a new biomedical model for NPC1. A genetic test could eliminate the disease variant from the population.
1 Background: Large animal models, such as the dog, are increasingly being used over 2 rodent models for studying naturally occurring diseases including gastrointestinal (GI) 3 disorders. Dogs share similar environmental, genomic, anatomical, and intestinal 4 physiologic features with humans. To bridge the gap between currently used animal 5 models (e.g. mouse) and humans, and expand the translational potential of the dog 6 model, we developed a three dimensional (3D) canine GI organoid (enteroid and 7 colonoid) system. Organoids have recently gained interest in translational research as 8 this model system better recapitulates the physiological and molecular features of the 9 tissue environment in comparison with two-dimensional cultures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.