Shortly after the explosion of the Chernobyl nuclear power plant (ChNPP) in 1986, radioactive fall-out and contaminated trees (socalled Red Forest) were buried in the Chernobyl Exclusion Zone (ChEZ). These days, exact locations of the buried contaminated material are needed. Moreover, 3D vegetation maps are necessary to simulate the impact of tornados and forest fire. After 30 years, some of the so-called trenches and clamps are visible. However, some of them are overgrown and have slightly settled in the centimeter and decimeter range. This paper presents a pipeline that comprises 3D vegetation mapping and machine learning methods to precisely map trenches and clamps from remote sensing data. The dataset for our experiments consists of UAV-based LiDAR data, multi-spectral data, and aerial gamma-spectrometry data. Depending on the study areas overall accuracies ranging from 95.6 % to 99.0 % were reached for the classification of radioactive deposits. Our first results demonstrate an accurate and reliable UAV-based detection of unknown radioactive biomass deposits in the ChEZ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.