Abstract. Knowledge of tree species mapping and of dead wood in particular is fundamental to managing our forests. Although individual tree-based approaches using lidar can successfully distinguish between deciduous and coniferous trees, the classification of multiple tree species is still limited in accuracy. Moreover, the combined mapping of standing dead trees after pest infestation is becoming increasingly important. New deep learning methods outperform baseline machine learning approaches and promise a significant accuracy gain for tree mapping. In this study, we performed a classification of multiple tree species (pine, birch, alder) and standing dead trees with crowns using the 3D deep neural network (DNN) PointNet++ along with UAV-based lidar data and multispectral (MS) imagery. Aside from 3D geometry, we also integrated laser echo pulse width values and MS features into the classification process. In a preprocessing step, we generated the 3D segments of single trees using a 3D detection method. Our approach achieved an overall accuracy (OA) of 90.2% and was clearly superior to a baseline method using a random forest classifier and handcrafted features (OA = 85.3%). All in all, we demonstrate that the performance of the 3D DNN is highly promising for the classification of multiple tree species and standing dead trees in practice.
Knowledge about tree species distribution is important for forest management and for modeling and protecting biodiversity in forests. Methods based on images are inherently limited to the forest canopy. Airborne lidar data provide information about the trees’ geometric structure, as well as trees beneath the upper canopy layer. In this paper, the potential of two deep learning architectures (PointCNN, 3DmFV-Net) for classification of four different tree classes is evaluated using a lidar dataset acquired at the Bavarian Forest National Park (BFNP) in a leaf-on situation with a maximum point density of about 80 pts/m$$^{2}$$
2
. Especially in the case of BFNP, dead wood plays a key role in forest biodiversity. Thus, the presented approaches are applied to the combined classification of living and dead trees. A total of 2721 single trees were delineated in advance using a normalized cut segmentation. The trees were manually labeled into four tree classes (coniferous, deciduous, standing dead tree with crown, and snag). Moreover, a multispectral orthophoto provided additional features, namely the Normalized Difference Vegetation Index. PointCNN with 3D points, laser intensity, and multispectral features resulted in a test accuracy of up to 87.0%. This highlights the potential of deep learning on point clouds in forestry. In contrast, 3DmFV-Net achieved a test accuracy of 73.2% for the same dataset using only the 3D coordinates of the laser points. The results show that the data fusion of lidar and multispectral data is invaluable for differentiation of the tree classes. Classification accuracy increases by up to 16.3% points when adding features generated from the multispectral orthophoto.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.