A photogalvanic cell is a battery in which the cell solution absorbs light directly to generate species which, upon back reaction through an external circuit with the aid of suitable electrodes, produces electric power; photoactivation of the electrodes is 'not involved. The charge-carrying species have storage capacity if they are long-lived and can be prevented from engaging in degradativc back reactions in bulk solution. The efficiency of a photogalvanic cell for the conversion of photon energy into electrical energy is determined by photochemical and electrochemical factors. Among the latter are the choice of electrode materials and the kinetics of electron transfer at the heterogeneous surfaces. In this paper we examine '"the photochemical determinants of the efficiency of photogalvanic eel] operation: the absorption spectral characteristics of the cell solution, the efficiency of formation of separated charge carriers, and the lifetimes of the carriers toward back electron transfer. Modulation of bulk solution dynamics can be achieved by variation of the solution medium. The photochemical determinants are discussed with particular reference to the use of thionine or Ru(bpy)2+ as the light absorbing species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.