Commission ICWG I/VbKEY WORDS: Multi-temporal, UAV, image-based approach, image registration, photogrammetry ABSTRACT:In the last years we have witnessed a rapid development of UAVs (Unmanned Aerial Vehicles), especially for image collection. One of the advantages is the possibility to perform high resolution and repeated flights in a cheap way to detect changes over time. Thus, dynamic scenes can be monitored acquiring image blocks in different epochs in a flexible way. Anyway, most of UAVs are not able to provide accurate direct geo-referencing information, so image blocks from different epochs still need to be co-registered to efficiently detect changes. This task is mostly completed using GCPs (Ground Control Points), although this approach is time consuming as manual intervention is needed. This paper aims at investigating new techniques to automate the co-registration of image blocks without the use of GCPs, just relying on an image based co-registration (IBCR) approach. The image alignment is initially performed on a reference (anchor) epoch and the registration of the following (slave) epochs is performed including some (anchor) images from the reference epoch with fixed external orientation parameters. This allows constraining the Bundle Block Adjustment of the slave epoch to be consistent with the reference one. The study involved the use of 10 multi-temporal image block over a large building construction site, and spanning a time frame of 2 years. Different tests have been performed for the reference image choice with a manual approach and then evaluating the reached accuracy. The performed tests on the chosen test site have shown that the accuracy of the proposed methodology provides results comparable to the common GCPs registration approach.
Commission ICWG I/VbKEY WORDS: Multi-temporal, UAV, image-based approach, image registration, photogrammetry ABSTRACT:In the last years we have witnessed a rapid development of UAVs (Unmanned Aerial Vehicles), especially for image collection. One of the advantages is the possibility to perform high resolution and repeated flights in a cheap way to detect changes over time. Thus, dynamic scenes can be monitored acquiring image blocks in different epochs in a flexible way. Anyway, most of UAVs are not able to provide accurate direct geo-referencing information, so image blocks from different epochs still need to be co-registered to efficiently detect changes. This task is mostly completed using GCPs (Ground Control Points), although this approach is time consuming as manual intervention is needed. This paper aims at investigating new techniques to automate the co-registration of image blocks without the use of GCPs, just relying on an image based co-registration (IBCR) approach. The image alignment is initially performed on a reference (anchor) epoch and the registration of the following (slave) epochs is performed including some (anchor) images from the reference epoch with fixed external orientation parameters. This allows constraining the Bundle Block Adjustment of the slave epoch to be consistent with the reference one. The study involved the use of 10 multi-temporal image block over a large building construction site, and spanning a time frame of 2 years. Different tests have been performed for the reference image choice with a manual approach and then evaluating the reached accuracy. The performed tests on the chosen test site have shown that the accuracy of the proposed methodology provides results comparable to the common GCPs registration approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.