BACKGROUND AND PURPOSETreatment of Parkinson's disease (PD) with L-DOPA eventually causes abnormal involuntary movements known as dyskinesias in most patients. Dyskinesia can be reduced using compounds that act as direct or indirect agonists of the 5-HT1A receptor, but these drugs have been reported to worsen PD features and are known to produce '5-HT syndrome', symptoms of which include tremor, myoclonus, rigidity and hyper-reflexia. EXPERIMENTAL APPROACHSprague-Dawley rats were given unilateral nigrostriatal dopamine lesions with 6-hydroxydopamine. Each of the following three purportedly anti-dyskinetic 5-HT compounds were administered 15 min before L-DOPA: the full 5-HT1A agonist ±-8-hydroxy-2-dipropylaminotetralin (±8-OH-DPAT), the partial 5-HT1A agonist buspirone or the 5-HT transporter inhibitor citalopram. After these injections, animals were monitored for dyskinesia, 5-HT syndrome, motor activity and PD akinesia. KEY RESULTSEach 5-HT drug dose-dependently reduced dyskinesia by relatively equal amounts (±8-OH-DPAT ≥ citalopram ≥ buspirone), but 5-HT syndrome was higher with ±8-OH-DPAT, lower with buspirone and not present with citalopram. Importantly, with or without L-DOPA, all three compounds provided an additional improvement of PD akinesia. All drugs tempered the locomotor response to L-DOPA suggesting dyskinesia reduction, but vertical rearing was reduced with 5-HT drugs, potentially reflecting features of 5-HT syndrome. CONCLUSIONS AND IMPLICATIONSThe results suggest that compounds that indirectly facilitate 5-HT1A receptor activation, such as citalopram, may be more effective therapeutics than direct 5-HT1A receptor agonists because they exhibit similar anti-dyskinesia efficacy, while possessing a reduced side effect profile.Abbreviations 5-HIAA, 5-hydroxyindolacetic acid; 6-OHDA, 6-hydroxydopamine; AIMs, abnormal involuntary movements; DOPAC, 3,4-dihydroxyphenylacetic acid; FAS, forepaw adjusting steps; LID, L-DOPA-induced dyskinesia; MAD, median absolute deviation; PD, Parkinson's disease; SSRI, selective 5-HT re-uptake inhibitor
Long-term L-DOPA use for Parkinson’s disease (PD) is frequently complicated by the emergence of a debilitating motor side effect known as L-DOPA-induced dyskinesia (LID). Accumulating evidence has implicated the norepinephrine (NE) system in the pathogenesis of LID. Here we used the unilateral 6-hydroxydopamine rat model of PD to determine the role of the α2-adrenoceptors (α2R) in L-DOPA’s therapeutic and detrimental motor-inducing effects. First, we characterized the effects of systemic α2R stimulation with clonidine, or blockade with atipamezole, on LID using the rodent abnormal involuntary movements scale, and L-DOPA’s therapeutic effects using the forepaw adjusting steps test and locomotor activity chambers. The anatomical locus of action of α2R in LID was investigated by directly infusing clonidine or atipamezole into the locus coeruleus prior to systemic L-DOPA administration. Results showed systemic clonidine treatment reduced LID and locomotor activity but did not interfere with L-DOPA’s antiparkinsonian benefits. Conversely, systemic atipamezole pretreatment prolonged LID and locomotor activity but did not modulate L-DOPA’s antiparkinsonian benefits. Intra-LC infusions of clonidine and atipamezole mirrored systemic effects where clonidine reduced, and atipamezole increased, LID. Collectively, these results demonstrate that α2R play an important modulatory role in L-DOPA-mediated behaviors and should be further investigated as a potential therapeutic target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.