With the use of different light and electron microscopic methods, we investigated the subcellular organization of afferent trigeminal terminals in the upper beak of the homing pigeon, Columba livia, which are about 5 microm in diameter and contain superparamagnetic magnetite (SPM) crystals. The SPM nanocrystals are assembled in clusters (diameter, approximately 1-2 microm). About 10 to 15 of these clusters occur inside one nerve terminal, arranged along the cell membrane. Each SPM cluster is embedded in a solid fibrous cup, open towards the cell surface, to which the cluster adheres by delicate fiber strands. In addition to the SPM clusters, a second inorganic iron compound has been identified: noncrystalline platelets of iron phosphate (about 500 nm wide and long and maximally 100 nm thick) that occur along a fibrous core of the terminal. The anatomic features suggested that these nerve endings could detect small intensity changes of the geomagnetic field. Such stimuli can induce deformations of the SPM clusters, which could be transduced into primary receptor potentials by mechanosensitive membrane receptor channels. The subepidermal fat cells surrounding the nerve endings prevent the inside from external mechanical stimuli. These structural findings corresponded to conclusions inferred from rock magnetic measurements, theoretical calculations, model experiments, and behavioral data, which also matched previous electrophysiologic recordings from migratory birds.
A combination of polymerase chain reaction-assisted rRNA sequence retrieval and fluorescent oligonucleotide probing was used to identify in situ a hitherto unculturable, big, magnetotactic, rod-shaped organism in freshwater sediment samples collected from Lake Chiemsee. Tentatively named "Magnetobacterium bavaricum," this bacterium is evolutionarily distant from all other phylogenetically characterized magnetotactic bacteria and contains unusually high numbers of magnetosomes (up to 1,000 magnetosomes per cell). The spatial distribution in the sediment was studied, and up to 7 x 10' active cells per cm3 were found in the microaerobic zone. Considering its average volume (25.8 + 4.1 ,um3) and relative abundance (0.64 + 0.17%), "M. bavaricum" may account for approximately 30% of the microbial biovolume and may therefore be a dominant fraction of the microbial community in this layer. Its microhabitat and its high content of sulfur globules and magnetosomes suggest that this organism has an iron-dependent way of energy conservation which depends on balanced gradients of oxygen and sulfide.
Magnetotactic bacteria (MTB) are a phylogenetically diverse group which uses intracellular membrane-enclosed magnetite crystals called magnetosomes for navigation in their aquatic habitats. Although synthesis of these prokaryotic organelles is of broad interdisciplinary interest, its genetic analysis has been restricted to a few closely related members of the Proteobacteria, in which essential functions required for magnetosome formation are encoded within a large genomic magnetosome island. However, because of the lack of cultivated representatives from other phyla, it is unknown whether the evolutionary origin of magnetotaxis is monophyletic, and it has been questioned whether homologous mechanisms and structures are present in unrelated MTB. Here, we present the analysis of the uncultivated "Candidatus Magnetobacterium bavaricum" from the deep branching Nitrospira phylum by combining micromanipulation and whole genome amplification (WGA) with metagenomics. Target-specific sequences obtained by WGA of cells, which were magnetically collected and individually sorted from sediment samples, were used for PCR screening of metagenomic libraries. This led to the identification of a genomic cluster containing several putative magnetosome genes with homology to those in Proteobacteria. A variety of advanced electron microscopic imaging tools revealed a complex cell envelope and an intricate magnetosome architecture. The presence of magnetosome membranes as well as cytoskeletal magnetosome filaments suggests a similar mechanism of magnetosome formation in "Cand. M. bavaricum" as in Proteobacteria. Altogether, our findings suggest a monophyletic origin of magnetotaxis, and relevant genes were likely transferred horizontally between Proteobacteria and representatives of the Nitrospira phylum.M agnetotactic bacteria (MTB) are widespread aquatic microorganisms that use unique intracellular organelles called magnetosomes to navigate along the earth's magnetic field while searching for growth-favoring microoxic zones within stratified sediments. In strains of Magnetospirillum, it was shown that magnetosomes consist of magnetite (Fe 3 O 4 ) crystals enclosed by a dedicated phospholipid membrane. The magnetosome membrane (MM) contains a specific set of proteins (1-3), which direct the biomineralization of highly ordered crystals along actin-like cytoskeletal filaments that control the assembly and intracellular positioning of a linear magnetosome chain (4-7). Synthesis of magnetosomes has recently emerged as a model for prokaryotic organelle formation and biomineralization (8-11). The trait of magnetotaxis is widely spread among Proteobacteria including members from the α-, δ-and γ-subdivisions, as well as uncultivated species from the deep branching Nitrospira phylum (8). The presence of MTB within unrelated lines of various phylogenetic groups, as well as their stunning diversity with respect to magnetosome shape, composition, and intracellular organization lead to speculations of whether the evolutionary origin of magnetota...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.