The infection of the avian coronavirus infectious bronchitis virus (IBV) is initiated by the binding of the spike glycoprotein S to sialic acids on the chicken host cell. In this study we identified the receptor-binding domain (RBD) of the spike of the prototype IBV strain M41. By analyzing the ability of recombinantly expressed chimeric and truncated spike proteins to bind to chicken tissues, we demonstrate that the N-terminal 253 amino acids of the spike are both required and sufficient for binding to chicken respiratory tract in an α-2,3-sialic acid-dependent manner. Critical amino acids for attachment of M41 spike are present within the N-terminal residues 19-69, which overlap with a hypervariable region in the S1 gene. Our results may help to understand the differences between IBV S1 genotypes and the ultimate pathogenesis of IBV in chickens.
The spike protein is the major viral attachment protein of the avian coronavirus infectious bronchitis virus (IBV) and ultimately determines viral tropism. The S1 subunit of the spike is assumed to be required for virus attachment. However, we have previously shown that this domain of the embryo- and cell culture adapted Beaudette strain, in contrast to that of the virulent M41 strain, is not sufficient for binding to chicken trachea (Wickramasinghe et al., 2011). In the present study, we demonstrated that the lack of binding of Beaudette S1 was not due to absence of virus receptors on this tissue nor due to the production of S1 from mammalian cells, as S1 proteins expressed from chicken cells also lacked the ability to bind IBV-susceptible embryonic tissue. Subsequently, we addressed the contribution of the S2 subunit of the spike in IBV attachment. Recombinant IBV Beaudette spike ectodomains, comprising the entire S1 domain and the S2 ectodomain, were expressed and analyzed for binding to susceptible embryonic chorio-allantoic membrane (CAM) in our previously developed spike histochemistry assay. We observed that extension of the S1 domain with the S2 subunit of the Beaudette spike was sufficient to gain binding to CAM. A previously suggested heparin sulfate binding site in Beaudette S2 was not required for the observed binding to CAM, while sialic acids on the host tissues were essential for the attachment. To further elucidate the role of S2 the spike ectodomains of virulent IBV M41 and chimeras of M41 and Beaudette were analyzed for their binding to CAM, chicken trachea and mammalian cell lines. While the M41 spike ectodomain showed increased attachment to both CAM and chicken trachea, no binding to mammalian cells was observed. In contrast, Beaudette spike ectodomain had relatively weak ability to bind to chicken trachea, but displayed marked extended host range to mammalian cells. Binding patterns of chimeric spike ectodomains to these tissues and cells indicate that S2 subunits most likely do not contain an additional independent receptor-binding site. Rather, the interplay between S1 and S2 subunits of spikes from the same viral origin might finally determine the avidity and specificity of virus attachment and thus viral host range.
Avian influenza virus (AIV) was recovered from the internal contents of eggs, including mixture of albumen and allantoic fluid, and from the oviduct of naturally infected Japanese quail (Coturnix coturnix japonica) flocks in the southern part of Thailand. The virus titers of 10(4.6)-10(6.2) ELD(50)/mL were directly measured from the internal content of infected eggs. The virus was isolated by chorioallantoic sac inoculation of embryonating chicken eggs. Infected allantoic fluid was identified as hemagglutinating virus and then was indicated the presence of H5 hemagglutinin. The virus was confirmed to be H5N1 subtype influenza A virus by reverse transcriptase-polymerase chain reaction. Additionally, real-time reverse transcriptase-polymerase chain reaction assay could specifically detect influenza virus subtype H5. Furthermore, indirect fluorescent antibody (IFA) test by using specific anti-influenza A monoclonal antibody indicated that virus antigens were detected in the parenchyma of multiple tissues. Systemic localization of viral antigen detected was certainly considered to be viremic stage. In addition, influenza virus antigen was also detected by IFA in allantoic fluid sediments isolated from internal content of egg or oviduct. The conclusion of isolated AIV type A subtype H5N1 from these two infected materials was correlated to the viremic stage of infection because the virus antigens could be observed in almost all tissues. Conclusively, the need for adequate safeguards to prevent contamination and spread of the virus to the environment during movement of eggs--including hatching eggs, cracked eggs, and other relevant infected materials-- or egg consumption from area of outbreak is emphasized and must not be ignored for the reasons of animal, public, and environmental health.
It is essential to understand the latest situation regarding avian coronaviruses (ACoVs), commonly referred to as the well-known avian infectious bronchitis virus (IBV), given that new and diverse types of IBV are continually being identified worldwide, particularly ones that are isolated from commercial poultry and associated with a wide range of disease conditions. The existing IBVs continue to evolve in various geographic areas in Asia, which results in the recombination and co-circulation between IBV types. This makes it increasingly difficult to prevent and control IBV infections, despite routine vaccination. Some ACoVs have also been identified in other avian species and they may pose a threat of cross-transmission to commercial sectors. The present review provides an overview of IBV circulation and the dynamic emergence of new variants found throughout Asia via the recombination of IBV strains. In addition to commercial poultry, backyard poultry and free-ranging birds may serve as a 'hub' for ACoV transmission within a particular area. These birds may be capable of spreading viruses, either to areas of close proximity, or to remote places via migration and trade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.