The Mid-Cayman spreading centre is an ultraslow-spreading ridge in the Caribbean Sea. Its extreme depth and geographic isolation from other mid-ocean ridges offer insights into the effects of pressure on hydrothermal venting, and the biogeography of vent fauna. Here we report the discovery of two hydrothermal vent fields on the Mid-Cayman spreading centre. The Von Damm Vent Field is located on the upper slopes of an oceanic core complex at a depth of 2,300 m. High-temperature venting in this off-axis setting suggests that the global incidence of vent fields may be underestimated. At a depth of 4,960 m on the Mid-Cayman spreading centre axis, the Beebe Vent Field emits copper-enriched fluids and a buoyant plume that rises 1,100 m, consistent with >400 °C venting from the world's deepest known hydrothermal system. At both sites, a new morphospecies of alvinocaridid shrimp dominates faunal assemblages, which exhibit similarities to those of Mid-Atlantic vents.
Atmtract. Continuous along-axis Sea Beam coverage of the slowintermediate spreading (34-38 mm yr 1 full rate) southern MidAtlantic Ridge (25~176 and 31~ ~ S) shows that the ridge axis is segmented by both rigid and non-rigid discontinuities. Following the model of Macdonald et al. (1988b), a hierarchy of four orders is proposed for ridge axis discontinuities based on a continuum of relative age and distance offset across the discontinuites. This paper discusses the characteristics associated with five second-order discontinuities found in the areas surveyed. Firstorder discontinuities represent rigid offsets, transform faults, whereas non-rigid discontinuities fall into the second, third and fourth orders. Like transform fault boundaries, second-order discontinuities have distinctive morphologic signatures both on and off-axis-discordant zones-and therefore are better defined than third-or fourth-order discontinuities. Second-order discontinuities are offsets that range in distance from less than 10 km to approximately 30 km and vary in age offset from 0.5 to approximately 2.0 m.y. The variable morphotectonic geometries associated with these discontinuities indicate that horizontal shear strains are accommodated by both extensional and strike-slip tectonism and that the geometries are unstable in time. Three characteristic geometries are recognized: (1) en echelon jog in the plate boundary where ridge axis tips overlap slightly, (2) en echelon jog in the plate boundary where ridge axes are separated by an extensional basin whose long axis is oriented parallel to the strike of the adjoining ridge axes, and (3) oblique offset characterized by a large extensional basin that is oriented approximately 45 ~ to the strike of the ridge axes. In the case of the third type, evidence for short strands of strike-slip tectonism that link an obliquely oriented extensional basin flanking ridge tips is often apparent. Analysis of the detailed bathymetric and magnetic data collected over the second-order discontinuities and their off-axis terrain out to 5-7 m.y. documents that second-order discontinuities can follow several evolutionary paths: they can evolve from transform fault boundaries through prolonged asymmetric spreading, they may migrate along strike leaving a V-shaped wake, and they may remain in approximately the same position but oscillate slightly back and forth. In addition, a small change in the pole of relative motion occurring 4-5 Ma is thought to have resulted in the Marine Geophysical Researches 13: 21-49, 1991. 9 1991 Kluwer Academic Publishers. Printed in the Netherlands. initiation of at least one second-order discontinuity in the survey area. A geologic model is proposed which involves the interplay of lithospheric thickness, asymmetric spreading, temporal and spatial variability of along-axis magmatic input and changes in the poles of relative motion to explain the origin, morphology and evolution of second-order ridge axis discontinuities.
[1] Roughly a third of the global mid-ocean ridge system spreads at <20 mm/yr (full rate) with predicted low crustal thicknesses, great axial depths, end-member basalt compositions, and prominent axial faults. These predictions are here further investigated along the ultraslow (15-17 mm/yr) Mid-Cayman Spreading Center (MCSC) through a compilation of both previously published and unpublished data. The MCSC sits along the Caribbean-North American plate boundary and is one of the world's deepest (>6 km) spreading centers, and thought to accrete some of the thinnest (∼3 km) crust. The MCSC generates end-member midocean ridge basalt compositions and hosts recently discovered hydrothermal vents. Multibeam bathymetric data reveal that axial depth varies along the MCSC with intraridge rift walls defined by kilometer-scale escarpments and massifs. Dredging and near-bottom work has imaged and sampled predominantly basaltic lavas from the greatest axial depths and ∼15% peridotite surrounded by gabbroic rocks from the prominent massifs. The gabbroic rocks exhibit wide compositional variation (troctolites to ferrogabbros) and in many places contain high-temperature (amphibolite to granulite facies) shear zones. Gabbroic compositions primarily reflect the accumulation of near-liquidus phases that crystallized from a range of basaltic melts, as well as from interactions with interstitial melts in a subaxial mush zone. Magnetization variations inverted from aeromagnetic data are consistent with a discontinuous distribution of basaltic lavas and structurally asymmetric spreading. These observations support an oceanic core complex model for MCSC seafloor spreading, potentially making it a type example of ultraslow seafloor spreading through mush zone and detachment fault crustal processes.
Abstract. The Puerto Rico-Virgin Islands carbonate platform was deposited over an area of 18,000 km 2 from early Oligocene to Holocene on top of an inactive and subsiding Cretaceous-earliest Oligocene island arc. Regional single-channel and multichannel seismic reflection lines presented in this study provide the first information on the regional stratigraphy and structure of this platform that has previously been known mainly from onshore stratigraphic sections of a relatively small (2250 km 2) portion of the platform exposed by late Neogene tectonic uplift along the north
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.