This catalog summarizes 117 high-confidence 0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emission for several young and millisecond pulsars. We compare the gammaray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.
We present a catalog of high-energy gamma-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), during the first 11 months of the science phase of the mission, which began on 2008 August 4. The First Fermi-LAT catalog (1FGL) contains 1451 sources detected and characterized in the 100 MeV to 100 GeV range. Source detection was based on the average flux over the 11 month period, and the threshold likelihood Test Statistic is 25, corresponding to a significance of just over 4σ. The 1FGL catalog includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and power-law spectral fits as well as flux measurements in five energy bands for each source. In addition, monthly light curves are provided. Using a protocol defined before launch we have tested for several populations of gamma-ray sources among the sources in the catalog. For individual LAT-detected sources we provide firm identifications or plausible associations with sources in other astronomical catalogs. Identifications are based on correlated variability with counterparts at other wavelengths, or on spin or orbital periodicity. For the catalogs and association criteria that we have selected, 630 of the sources are unassociated. Care was taken to characterize the sensitivity of the results to the model of interstellar diffuse gamma-ray emission used to model the bright foreground, with the result that 161 sources at low Galactic latitudes and toward bright local interstellar clouds are flagged as having properties that are strongly dependent on the model or as potentially being due to incorrectly modeled structure in the Galactic diffuse emission.
Observations of magnetars and some of the high magnetic field pulsars have shown that their thermal luminosity is systematically higher than that of classical radiopulsars, thus confirming the idea that magnetic fields are involved in their X-ray emission. Here we present the results of 2D simulations of the fully-coupled evolution of temperature and magnetic field in neutron stars, including the state-of-the-art kinetic coefficients and, for the first time, the important effect of the Hall term. After gathering and thoroughly re-analysing in a consistent way all the best available data on isolated, thermally emitting neutron stars, we compare our theoretical models to a data sample of 40 sources. We find that our evolutionary models can explain the phenomenological diversity of magnetars, high-B radio-pulsars, and isolated nearby neutron stars by only varying their initial magnetic field, mass and envelope composition. Nearly all sources appear to follow the expectations of the standard theoretical models. Finally, we discuss the expected outburst rates and the evolutionary links between different classes. Our results constitute a major step towards the grand unification of the isolated neutron star zoo.with the very active magnetars, showing intermediate luminosities, and sporadic magnetar-like activity. The radioquiet X-ray Isolated NSs (XINSs) are a class of relatively old, nearby cooling NSs, with the cleanest detected thermal emission and a relatively large magnetic field. Last, Central Compact Objects (CCOs, Gotthelf et al. 2013) represent a handful of puzzling, radio-quiet sources which in some cases combine a very weak external magnetic field with a relatively large luminosity and evidence for anisotropic surface temperature distribution.Although isolated NSs have been divided into all these observational classes for historical reasons, a unifying vision considers them as different manifestations of the same underlying physics (Kaspi 2010). In this context, one of the main theoretical tasks is to explain the varied phenomenology of their X-ray emission. X-ray spectra carry precious information about the surface temperature and the physics driving the cooling of the NSs. The detected X-ray flux, if accompanied by a reliable distance measurement, leads to an estimate of the bolometric luminosity, which can be confronted with cooling models to infer properties of dense matter in the NS interior. In addition, timing properties (period
Spectral analysis of Swift/XRT dataWe use the xspec v11.3.2 X-ray spectral fitting package to fit both a power law and a blackbody model to the XRT outburst data. In both models we allow for excess neutral hydrogen absorption (N H ) above the Galactic value along the line of sight to NGC 2770, N H,Gal = 1.7 × 10 20 cm −2 . The best-fit power law model (χ 2 = 7.5 for 17 degrees of freedom; probability, P = 0.98) has a photon index, Γ = 2.3 ± 0.3 (or, F ν ∝ ν −1.3±0.3 ) and N H = 6.9 +1.8 −1.5 × 10 21 cm −2 . The best-fit blackbody model is described by kT = 0.71 ± 0.08 keV and N H = 1.3 +1.0 −0.9 × 10 21 cm −2 . However, this model provides a much poorer fit to the data (χ 2 = 26.0 for 17 degrees of freedom; probability, P = 0.074). We therefore adopt the power law model as the best description of the data. The resulting count rate to flux conversion is 1 counts s −1 = 5 × 10 −11 erg cm −2 s −1 . The outburst undergoes a significant hard-to-soft spectral evolution as indicated by the ratio of counts in the 0.3 − 2 keV band and 2 − 10 keV band. The hardness ratio decreases from 1.35 ± 0.15 during the peak of the flare to 0.25 ± 0.10 about 400 s later. In the context of the power law model this spectral softening corresponds to a change from Γ = 1.70 ± 0.25 to 3.20 ± 0.35 during the same time interval. High resolution optical spectroscopyWe obtained the spectrum with the High Resolution Echelle Spectrometer (HIRES) mounted on the Keck I 10-m telescope beginning at Jan 17.46 UT. A total of four 1800-s exposures were obtained with a spectral resolution, R = 48, 000, and a slit width of 0.86 arcsec. The data reach a signal-to-noise ratio of 18 per pixel. We reduced the data with the MAKEE reduction package. We are interested in the Na I D and K I absorption features since they are sensitive to the gas column density, and hence extinction, along the line of the sight to the SN. Rejecting a Relativistic Origin for XRO 080109We investigate the possibility that XRO 080109 is the result of a relativistic outflow similar to that in GRBs. In this context the emission is non-thermal synchrotron radiation. The outburst flux density is 7.5 × 10 2 µJy at 0.3 keV. Simultaneously, we find 3σ limits on the flux density in the UBV bands (∼ 3 eV) of F ν < 9.0 × 10 2 µJy, indicating that the peak of the synchrotron spectrum must be located between the UV and X-ray bands. In the standard synchrotron model this requires the frequencies corresponding to electrons with the minimum and cooling Lorentz factors to obey ν m ≈ ν c ≈ 3 × 10 16 Hz, while the peak of the spectrum is F ν,p ≈ 3 mJy.The inferred values of ν m and ν c allow us to constrain 47 the outflow parameters and thus to check for consistency with the hypothesis of relativistic expansion. The relevant parameters are the bulk Lorentz factor (γ), the magnetic field (B), and the shock radius (R sh ). From the value of ν c we find γB 3 ≈ 8.3 × 10 3 , and since γ > 1 we conclude that B < 20 G. In addition, using ν m we find ǫ 2 e γ 3 B ≈ 3 × 10 4 ; here ǫ e is the fraction of posts...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.