The influence of viscosity on droplet-droplet collision behavior at ambient conditions was studied experimentally and numerically. N-decane, monoethyleneglycol (MEG), diethyleneglycol (DEG), and triethyleneglycol were used as liquid phase providing viscosities in the range from 0.9to48mPas. Collision Weber numbers ranged approximately from 10 to 420. A direct numerical simulation code, based on the volume-of-fluid concept, was used for the simulations. Experimentally, observations of two droplet streams using a modified stroboscopic technique (aliasing method) were used to investigate the whole range of impact parameters during one experimental run. The experimental method has previously been verified for the water/air system [C. Gotaas et al., Phys. Fluids 19, 102105 (2007)]. In the present work, it was tested and validated for the n-decane/air system. Measured data agree well with those published in the literature. Well-defined regions of stretching separation and coalescence were identified, while reflexive separation regions were not found by using a single sinusoidal disturbance. However, the onset of reflexive separation was identified for MEG and DEG using an amplitude modulation technique. The results show that the criteria for onset of reflexive separation for viscous fluids provided by Y. I. Jiang et al. [J. Fluid Mech. 234, 177 (1992)] are not valid. This is consistent with the results given by K. D. Willis and M. Orme [Exp. Fluids 34, 28 (2003)]. A new empirical correlation for the onset of reflexive separation for high viscosity fluids is presented. The borders between coalescing and stretching separation were shifted toward higher Weber numbers with increasing viscosity. The lack of occurrence of reflexive separation for the single sinusoidal disturbance (small droplets), as well as the stretching separation boundary shift, can be explained by dissipation of collision kinetic energy in viscous flows inside the merged droplet after collision. Results from numerical simulations for MEG, DEG, and TEG correlated well with experimental data for the same fluids.
Monodisperse droplet streams are used to study the droplet wall interaction of ethanol droplets in the micrometer range. Qualitative results are given for different regimes of droplet wall interaction. The phenomena observed range from complete wetting to almost elastic reflection of the droplets. Complete wetting is observed for low wall temperatures, whereas reflection occurs for wall temperatures above the Leidenfrost temperature. For high impact velocities and high wall temperatures above the Leidenfrost temperature the formation of secondary droplets can be observed. Image processing is used to obtain quantitative results for the loss of momentum during wall interaction for cases of droplet reflection without formation of secondary droplets.
For many optical methods in liquid particle sizing the refractive index of the liquid must be known. There is no problem if the data are available in the literature. If the liquid is unknown or if the refractive index changes because of a heating process or chemical reactions, the refractive index must be measured to achieve accurate sizing. A method is presented to determine the real part of the refractive index of droplets using the shift in the position of the first rainbow. Results from the application of this method to burning droplet streams are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.