Lakes and reservoirs are recognized as important sentinels of climate change, integrating catchment and atmospheric climate change drivers. Climate change conceptual models generally consider lakes and reservoirs together despite the possibility that these systems respond differently to climate-related drivers. Here, we synthesize differences between lake and reservoir characteristics that are likely important for predicting waterbody response to climate change. To better articulate these differences, we revised the energy mass flux framework, a conceptual model for the effects of climate change on lentic ecosystems, to explicitly consider the differential responses of lake versus reservoir ecosystems. The model predicts that catchment and management characteristics will be more important mediators of climate effects in reservoirs than in natural lakes. Given the increased reliance on reservoirs globally, we highlight current gaps in our understanding of these systems and suggest research directions to further characterize regional and continental differences among lakes and reservoirs. Author Contribution Statement: NMH and BRD co-led the manuscript effort and contributed equally. JRC and BRD conducted the statistical analyses. KES and JRC designed the lake pairing analysis. NMH, NRR, and KES developed the climate change conceptual model. This paper was a highly collaborative effort and all authors contributed equally to the development of the research question and study design as well as the writing of the paper. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. Scientific Significance StatementClimate change poses a significant threat to freshwater ecosystems, though the exact nature of these threats can vary by waterbody type. An existing conceptual model describes how altered fluxes of mass and energy will affect standing waterbodies, but it does not differentiate reservoirs from lakes. Here, we synthesize evidence suggesting that lakes and reservoirs differ in fundamental ways that are likely to influence their response to climate change. We then present a revised conceptual model that contrasts climate change effects on reservoirs versus lakes. 47Limnology and Oceanography Letters 2, 2017, 47-62
Scientists who are skilled in communication reap professional and personal rewards. Unfortunately, gaps exist in fostering curricular and extracurricular training in science communication. We focus our article on opportunities for university-and department-level leadership to train new scientists to communicate effectively. Our motivation is threefold: (1) communication training is key to being competitive in the increasingly diverse job market, (2) training early career scientists in communication "jump-starts" personal and societal benefits, and (3) the authors represent a group of early career aquatic scientists with unique insights on the state of and need for training. We surveyed early career aquatic scientists about their science communication training experiences. In summary, survey respondents indicated that (1) science communication training is important; (2) graduate students are interested in training that is not currently available to them; (3) departments and advisors are moderately supportive of students participating in science communication, but less enthusiastic about providing training support; and (4) graduate students lack opportunities to put science communication training into practice. We recommend departments and institutions recognize the benefits of science communication training, develop a strategy to support such training, and facilitate individualized approaches to science communication.
Aquatic-to-terrestrial subsidies have the potential to provide riparian consumers with benefits in terms of physiologically important organic compounds like omega-3 long-chain polyunsaturated fatty acids (n-3 LCPUFAs). However, they also have a "dark side" in the form of exposure to toxicants such as mercury. Human land use intensity may also determine whether subsidies provide benefits or come at a cost for riparian predators. We sampled insects as well as Eastern Phoebe (Sayornis phoebe) chicks in 2015−2016 within the southern Finger Lakes region to understand how food quality, in terms of n-3 LCPUFAs and methylmercury (MeHg), of emergent freshwater insects compared with that of terrestrial insects and how land use affected the quality of prey, predator diet composition, and MeHg exposure. Across the landscape, freshwater insects had a significantly higher percentage of the n-3 LCPUFA eicosapentaenoic acid (EPA) compared to terrestrial insects and contained significantly more MeHg than terrestrial insects did. In spite of differences in MeHg concentrations between aquatic and terrestrial insects, chick MeHg concentrations were not related to diet composition. Instead, chick MeHg concentrations increased with several metrics of human land use intensity, including percent agriculture. Our findings suggest that freshwater subsidies provide predators with both risks and benefits, but that predator MeHg exposure can vary with human land use intensity.
We examined factors and pathways involved in the transfer of mercury (Hg) to the food web in St. Lawrence River embayments near Cornwall, Ontario, where natural remediation of contaminated sediments (eventual burial by settling of cleaner sediments) has been adopted as a management strategy. Yellow perch (Perca flavescens) from one of the study zones (Zone 1) along the river by Cornwall contained significantly higher total mercury (THg) concentrations than perch from other equally contaminated zones. While THg concentrations in benthic invertebrates did not vary among contaminated zones, THg concentrations in yellow perch and invertebrate prey recovered from the perch stomachs were 1.5-2.5 times higher in Zone 1 than those from other zones, suggesting that prey selection affects THg accumulation more than habitat location. No significant differences were found in THg concentrations among different prey species within Zone 1, although there were significant differences in THg concentrations in the same prey species within Zone 1. In contrast, THg concentrations among different prey species increased significantly with trophic level in other contaminated and reference zones. The lack of correspondence between trophic position and THg accumulation in Zone 1 suggests two possibilities: (1) yellow perch in Zone 1 are highly mobile and are assimilating THg from a wide range of prey across Zone 1 with variable THg concentrations and (2) there may be an important non-dietary source of THg to the Zone 1 food web. Potential waterborne Hg sources to Zone 1 were investigated. Whereas THg and MeHg values in discharges from a disused canal were similar to Zone 1 surface water values (0.97 and 0.04 ng l -1 , respectively), concentrations in storm sewer and combined sewer overflows discharging in the vicinity of Zone 1 were 19-45-fold (THg) and 2-4-fold (MeHg) higher than upstream river water. Contributions of Hg to the water column from sediment-water diffusion, estimated using a simple, well-mixed reactor model, ranged 0.05-0.1% of the surface water THg concentration and 1-2% of the MeHg concentration measured in summer months in Zone 1. Although not investigated in the other zones, a strong correlation (r 2 = 0.82) was found between Guest editors: M. Power, J.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.