Estimation of the frequency and spatial dependent boundary traction vector from measured vibration responses in a vibrating structure is addressed. This problem, also referred to as the inverse problem, may in some circumstances be ill-conditioned. Here a technique to overcome the ill-conditioning is proposed. A subset of a set of available eigenmodes is chosen such that the problem becomes well-conditioned enough. It is shown that the ill-conditioning originates from the fact that not all eigenmodes are orthogonal over the surface where the traction vector is sought. Consequently, by choosing a set of eigenmodes orthogonal over the surface of interest, the problem becomes well-conditioned. The calculated traction vector is shown to converge to the true one in the sense of a L 2 -norm on the boundary of the body. The proposed technique is verified, using numerical simulation of measured responses, with good agreement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.