The production and composition of extracellular polymeric substances (EPS) in axenic batch cultures of the benthic marine epipelic diatoms Navicula salinarum and Cylindrotheca closterium were investigated. EPS was secreted into the medium and the bulk was loosely associated with the cells. Neither N. salinarum nor C. closterium formed a well-defined polysaccharide capsule. EPS of both N. salinarum and C. closterium consisted predominantly of polysaccharide but small quantities of protein were present as well. EPS also contained uronic acids and SO % #− groups. Analysis of monosaccharides using gas chromatography showed that for both species glucose and xylose were the main constituents, but several other monosaccharides were present in smaller quantities. Two fractions of EPS were distinguished : a small amount was secreted into the medium and a second fraction was extracted in water at 30 mC. For both species the two fractions differed somewhat in composition, indicating that they represented two different types of EPS. The EPS produced by N. salinarum and by C. closterium differed in their composition. The rate of EPS production in batch culture was highest during the transition from exponential growth to stationary growth. Negatively charged groups such as uronic acids and sulphated sugars determine the adhesion capacity of EPS and probably play an important role in the stabilization of intertidal sediments on which these diatoms grow and produce biofilms.
The secretion of exopolysaccharide in an axenic culture of the marine benthic diatom Cylindrotheca clostenum was investigated. The central question of the experiments was if polysaccharide secretion was dependent on light and photosynthesis. Cells were incubated in the light, in the dark, or in the light with addition of the inhibitor of Photosystem II,3-(3,4-dichloropheny1)-l, l-dimethyl urea (DCMU). These treatments were also applied to a population of benthic diatoms on an intertidal mudflat in the Westerschelde (Scheldt estuary, The Netherlands). In the light (60 p 0 1 photons m-' S-') C. clostenum showed high rates of polysaccharide secretion, while no secretion was observed in the dark or in the presence of DCMU. No intracellular carbohydrate was converted to exopolysaccharide in the dark or in the light with DCMU added. This indicated that secretion of exopolysaccharide was dependent on oxygenic photosynthesis. Similarly, high rates of exopolysaccharide accumulation were observed during daytime emersion on the mudflat, but not in darkened or DCMU-treated sediment. This demonstrated that the pattern observed in cultures of C. closterium was reproducible in situ. It was observed that dunng daytime emersion patterns of vertical migration in the dark and DCMU-treated plots did not differ from those in the light. This implies that motility was not the steering factor for the observed accumulation of exopolysaccharide in the light. When an axenic culture of C. closterium was incubated under an alternating 12 h light:12 h dark cycle, exopolysaccharide concentrations decreased in the dark. Degradation of exopolysaccharide was also observed in the natural population on the mudflat during emersion at night. Because no bacteria were present in the C. clostenum cultures, it was conceived that the degradation of exopolysaccharide observed in cultures was due to secretion of hydrolytic enzymes by C. clostenum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.