The N-terminal nucleophile (Ntn) hydrolase superfamily comprises enzymes sharing a characteristic organization of the secondary structure in the catalytic domain, despite the very low sequence homology [1,2].The reaction mechanism that is suggested to be common for all Ntn hydrolases resembles that of serine proteases, involving consecutive enzyme acylation and deacylation steps. A feature of the catalytic mechanism A new set of experimental kinetic data on the hydrolysis of a series of phenylacetyl p-substituted anilides catalyzed by penicillin G acylase from Escherichia coli (PGA) is presented in this article. The Hammett plot of log(k cat,R ⁄ k cat,H ) versus r p ) has three linear segments, which distinguishes the enzyme from the other N-terminal nucleophile hydrolases for which data are available. Three amino acids in the vicinity of the catalytic SerB1 (AsnB241, AlaB69, and GlnB23) were included in the quantum mechanical model. The stable structures and the transition states for acylation were optimized by molecular mechanical modeling and at the AM1 level of theory for three model substrates (with H, a methoxy group or a nitro group in the para position in the leaving group). Intrinsic interactions of several functional groups at the active site of PGA are discussed in relation to the catalytic efficiency of the enzyme. The energy barrier computed for the first step of acylation (the nucleophilic attack of SerB1) is lower than that for the second step (the collapse of the tetrahedral intermediate). However, the electronic properties of the substituent on the leaving group affect the structure of the second transition state. It is shown that the main chain carbonyl group of GlnB23 forms a hydrogen bond with the leaving group nitrogen, thus influencing the hydrolysis rate. On the basis of our computations, we propose an interpretation of the complex character of the Hammett plot for the reaction catalyzed by PGA. We suggest a modified scheme of the catalytic mechanism in which some of the intramolecular interactions essential for catalysis are included.
The sunflower seed (Helianthus annuus L.) major peptidase was purified to molecular homogeneity. It is an 80 kDa enzyme with pI of 4.6 and optimal activity at pH 7.5-8.0 and 45-50°C. It is a thiol-dependent aminopeptidase hydrolyzing peptides in a step-by-step manner as cleaving after the N-terminal amino acid residue of the substrate. It requires substrate acyl parts with a free amino group in either a-or b-position and L-configuration of the adjacent carbon atom. The enzyme prefers amino acid residues with bulky hydrophobic side chains at P 1 -position and its catalytic efficacy is affected by the structure of both P 1 and P 1 0 parts of the substrate.
SummaryIt was found that the effect of heparin on the amidase activity of urokinase (E C 3.4.21.31), plasmin (E C 3.4.21.7) and trypsin (E C 3.4.21.4) depended on the substrate used. No effect of heparin on the amidase activity of urokinase and trypsin was observed when Pyro Glu-Gly-Arg-p-nitroanilide (S-2444) and α-N-acetyl-L-lysine-p-nitroanilide (ALNA) were used as substrates. Heparin acted as a uncompetitive inhibitor of trypsin (Ki = 1.2×10-6 M), plasmin (Ki = 4.9×10-6 M) and urokinase (Ki = l.0×10-7 M) when Bz-Phe-Val-Arg-p-nitroanilide (S-2160), H-D-Val-Leu-Lys-p-nitroanilide (S-2251) and plasminogen, respectively, were used as substrates. These results, as well as the data obtained by studying the effect of the simultaneous presence of heparin and competitive inhibitors suggest that although heparin is not bound at the active center of these enzymes, it may influence the effectivity of catalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.