This work focuses on studying two types of structure: homogeneous and double-diffused emitter silicon solar cells. The emitter collection efficiencies and the recombination current densities were studied for a wide range of surface dopant concentrations and thicknesses. The frontal metal-grid was optimized for each emitter, considering the dependence on the metal-semiconductor contact resistivity and on the emitter sheet resistance. The best efficiency for n + p structures, η ≈ 25.5%, is found for emitters with thicknesses between (0.5-3) µm and surface doping concentrations in the range 2 x 10 19 cm -3 -4 x 10 18 cm -3 ; while the n ++ n + p structure a maximum efficiency of η ≈ 26.0% was identified for an even wider range of emitter profiles.
Considering recent modifications on n-type highly doped silicon parameters, an emitter optimization was made based on one-dimensional models with analytical solutions. In order to get good accuracy, a fifth order approximation has been considered. Two kinds of emitters, homogeneous and non-homogeneous, with phosphorus Gaussian profile emitter solar cells were optimized. According to our results: homogeneous emitter solar cells show their maximum efficiencies (h @ 21.60-21.74%)with doping levelsnus = 1x10(19) - 5x10(18) (cm-3) and (1.2-2.0) mum emitter thickness range. Non-homogeneous emitter solar cells provide a slightly higher efficiency (eta = 21.82-21.92%), with Ns = 1x10(20) (cm-3) with 2.0 mum thickness under metal-contacted surface and Ns = 1x10(19) - 5x10(18) (cm-3) with (1.2-2.0) mum thickness range, (sheet resistance range 90-100 W/ ) under passivated surface. Although non-homogeneous emitter solar cells have a higher efficiency than homogeneous emitter ones, the required technology is more complex and their overall interest for practical applications is questionable
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.