Background Necrotizing enterocolitis (NEC) is an inflammatory gastrointestinal disease primarily affecting preterm neonates. Neonates with NEC suffer from a degree of neurodevelopmental delay that is not explained by prematurity alone. There is a need to understand the pathogenesis of neurodevelopmental delay in NEC. In this study, we assessed the macroscopic and microscopic changes that occur to brain cell populations in specific brain regions in a neonatal mouse model of NEC. Moreover, we investigated the role of intestinal inflammation as part of the mechanism responsible for the changes observed in the brain of pups with NEC. Methods Brains of mice were assessed for gross morphology and cerebral cortex thickness (using histology). Markers for mature neurons, oligodendrocytes, neural progenitor cells, microglia, and astrocytes were used to quantify their cell populations in different regions of the brain. Levels of cell apoptosis in the brain were measured by Western blotting and immunohistochemistry. Endoplasmic reticulum (ER) stress markers and levels of pro-inflammatory cytokines (in the ileum and brain) were measured by RT-qPCR and Western blotting. A Pearson test was used to correlate the levels of cytokines (ELISA) in the brain and ileum and to correlate activated microglia and astrocyte populations to the severity of NEC. Results NEC pups had smaller brain weights, higher brain-to-body weight ratios, and thinner cortices compared to control pups. NEC pups had increased levels of apoptosis and ER stress. In addition, NEC was associated with a reduction in the number of neurons, oligodendrocytes, and neural progenitors in specific regions of the brain. Levels of pro-inflammatory cytokines and the density of activated microglia and astrocytes were increased in the brain and positively correlated with the increase in the levels pro-inflammatory cytokines in the gut and the severity of NEC damage respectively. Conclusions NEC is associated with severe changes in brain morphology, a pro-inflammatory response in the brain that alters cell homeostasis and density of brain cell populations in specific cerebral regions. We show that the severity of neuroinflammation is associated with the severity of NEC. Our findings suggest that early intervention during NEC may reduce the chance of acute neuroinflammation and cerebral damage. Electronic supplementary material The online version of this article (10.1186/s12974-019-1481-9) contains supplementary material, which is available to authorized users.
Aim: To investigate the association of MDM2 expression at the mRNA levels in neuroblastoma with clinical features and unfavorable disease factors to determine the possibility of it usage as a prognostic marker of neuroblastoma. Materials and Methods: Total RNA and DNA were extracted from tumor tissue samples of total 91 neuroblastoma patients (mean age: 39.45 ± 4.81 months). MDM2 mRNA levels were detected with Q-PCR. TP53 gene deletion was detected with FISH method. MYCN amplification was detected with Q -PCR analysis in fresh tumor samples and FISH in FFPE samples. Results: We investigated the association of MDM2 mRNA expression with clinical outcome in neuroblastoma patients (n = 91). Kaplan — Meier curves showed a significant association of high MDM2 expression with poor event-free survival (p < 0.001). Clinical outcome of patients without MYCN amplification with low MDM2 expression was associated with better event-free survival than with high MDM2 expression (p < 0.001). Overexpression of MDM2 can be used as significant prognostic marker for patient stratification on risk groups and treatment optimization. Conclusion: Our results showed that the high expression of MDM2 at mRNA levels is an important factor of neuroblastoma prognosis. It may be a valuable additional molecular marker in guiding specific therapy in MYCN non-amplified NB patients without TP53 gene deletion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.