From the standpoint of modern ideas, the normal functioning of the poultry body and full implementation her of the genetic potential is impossible without the presence of selenium in the diet. The biochemical diversity of selenium puts it in a number of priority trace elements. Scientists who were studying the effects of selenium on poultry body and paid relatively little attention to the quality of the meat. In scientific experiment are studied the effect of additives different doses of selenium in compound feed on the chemical composition, energy and biological value of meat of the cross chickens-broilers COBB 500. Introduction of selenium into the feed for broiler chickens in the doses which are studied (0.3 mg/kg, 0.4 and 0.5 mg/kg) did not significantly affect to the quality of their muscle tissue although it positively affected on some indicators that characterizing its chemical composition, nutritional and biological value. Among the experimental groups, the best meat quality indicators were in the second group of chickens for which was introduced into the feed selenium from the calculation of 0.3 mg/kg. When feeding mixed feeds with selenium additives to broiler chickens it was found that it is likely to increase the concentration of this trace element in muscle tissue by 60.6-100% (P?0.001), which does not exceed the maximum permissible level (MPL). Consumption of selenium-enriched meat of broiler chickens within the limits of the physiological norms recommended in Ukraine will ensure the daily requirement of an adult in this trace element by 23.6-29.4%. This meat product can be especially useful for people who live in regions with low levels of selenium in the natural environment.
It was presented the results of studies of the cadmium effect loading on the activity of the glutathione system of antioxidant protection in young cattle, namely on the activity of glutathione peroxidase, glutathione reductase, glucose-6-phosphate dehydrogenase, the level of reduced glutathion. It was established that feeding of cadmium chloride to bullocks at a dose of 0.03 and 0.05 mg/kg body weight contributed to a decrease in both the enzyme and non-enzyme link of the glutathione antioxidant defense system. The toxic effect of cadmium contributes to a change in stationary concentrations of radical metabolites. О2˙ˉ, ˙ОН, НО2˙, which, in turn, initiate lipid peroxidation processes. The lowest level of glutathione indexes of the antioxidant defense system in the blood of young cattle was established on the sixteenth and twenty fourth day of the experiment, it was associated with enhanced activation of lipoperoxidation and an imbalance between the activity of the antioxidant system and the intensity of lipid peroxidation. The feeding of cadmium chloride to bullocks at a dose of 0.03 and 0.05 mg/kg of animal weight did not affect the activity of the glutathione antioxidant defense system in their blood. It was established that the greater the amount of cadmium chloride in the feed, the lower the activity of the glutathione system of the antioxidant defense of the body of bulls. Thus, cadmium chloride suppresses the antioxidant protection system, in particular, by reducing the activity of the enzyme link: glutathione peroxidase, glutathione reductase, glucose-6-phosphate dehydrogenase, and non-enzyme link: reduced glutathione.
In the conditions of modern man-caused pollution of the environment, environmental problems, as well as improving the quality of livestock products and their food safety, are important and relevant issues today. The study aimed to investigate the effect of the “Metisevit Plus” feed additive on bull blood's morphological and biochemical parameters under lead-cadmium loading conditions. The research was conducted based on the agricultural private enterprise “Ukraine” of Dubrovytsia district of Rivne region on 12 bulls of six months of age, Ukrainian black-and-white dairy breed, which was formed into two groups of 6 animals each. The bulls of the control group were on a standard diet. The bulls of the experimental group were fed the feed additive “Metisevit Plus” at a dose of 0.5 g/kg of feed. This farm has a high content of lead and cadmium in feed. According to the results of experimental studies, it was found that the feed additive “Metisevit Plus” is effective under lead-cadmium load in bulls. Administration of this feed additive to experimental animals helps restore their suppressed hematopoietic function; the number of erythrocytes and hemoglobin in their blood increased by 25.3 and 19.4 %, and the number of leukocytes decreased by 12.4 %, respectively. Metisevit Plus feed additive also enhanced the functional state and protein-synthesizing function of the liver of bulls under artificial conditions. When feeding the feed additive “Metisevit Plus”, a decrease in the activity of both alanine aminotransferase and aspartate aminotransferase in the serum of bulls of the experimental group was found. On day 40 of the experiment, it was found that the activity of alanine and aspartate aminotransferase in the serum of bulls of the experimental group fluctuated within physiological values. When a “Metisevit-Plus” feed additive is added to the diet, there is a tendency to increase the total protein level in bulls of the experimental group. In the study of the albumin level in the blood of bulls of the experimental group, its probable increase was found starting from the 10th day of the experiment. On the 30th and 40th day of the experiment, the albumin level in the blood of bulls in the experimental group was the highest, whereas compared to the control group, it increased by 15.4 and 17.0 %, respectively. Our studies confirm the feasibility of using the feed additive “Metisevit Plus” to prevent lead-cadmium toxicosis.
Hippopotamidae family is nowadays represented by two species within two different genera: pygmy hippopotamus (Choeropsis liberiensis) and common hippopotamus (Hippopotamus amphibius). The common hippopotamus has a very unique anatomy, and the shape of the body, especially the head is adapted for a semi-aquatic life style. The morphological examination and description of the gross anatomical features of the hippopotamus skull is described in this paper. The shape of the skull is adapted for the amphibian way of life. Their eyes, ears and nostrils are placed high on the roof of the skull which allows these organs to remain above the surface of the water while the animal is being submerged underwater. The skull is massive, but the brain case (neurocranium) is extremely small compared with the splanchnocranium and complete head. The dental formula of the common hippopotamus is: incisors (I) 2/2, canines (C) 1/1, premolars (P) 3-4/3-4 and molars (M) 3/3. Incisors and canine teeth are formed in the shape of tusks and are used for threat or “demonstration of power” among animals when vigorously fi ghting. Incisor teeth grow continuously and are twice bigger in males than in females.
У статті за використання анатомічних, гістологічних, нейрогістологічних та морфометричних методів досліджень викладено особливості макро- та мікроскопічної будови мозочка статевозрілої великої рогатої худоби (ВРХ). За результатами досліджень мозочок великої рогатої худоби характеризується загальними принципами його структурної організації та морфотопографії, проте відрізняється органометричними показниками. Так, за даними органометрії досліджень встановлено, що абсолютна маса мозочка великої рогатої худоби становить 72,59 ± 0,94 г, відносна – 0,02 ± 0,002%, його довжина складає 42,1 ± 0,36 мм, ширина – 55,3 ± 0,41, висота – 43,5 ± 0,44 мм. Сіра речовина мозочка розміщена поверхнево і формує його кору, біла міститься у центрі. У сірій речовині мозочка розрізняють три шари клітин: молекулярний (зовнішній), гангліонарний (середній) і зернистий (внутрішній), які мають різну товщину та характеризуються неоднаковою популяцією нейронів. Молекулярний шар кори мозочка найбільш поверхневий. Він містить невеликі нейрони – кошикові та зірчасті. Гангліонарний шар кори мозочка представлений надзвичайно великими клітинами Пуркіньє, розміщеними в один ряд на незначній відстані одна від одної. Їх нейроплазма містить виражені глибки базофільної зернистості, що свідчить про інтенсивний розвиток у них білоксинтезувального апарату, який знаходиться у вигляді дрібної або крупнішої зернистості, рівномірно заповнюючи майже всю нейроплазму. Зернистий шар мозочка складається з великої кількості нейронів: клітин-зерен та зірчастих клітин Гольджі, яких є два види (короткоаксонні та довгоаксонні). За результатами проведених цитоморфометричних досліджень середній показник об’єму нейронів клітин Пуркіньє мозочка у великої рогатої худоби становить 6581,62 ± 688,7 мкм3, показники об’єму ядра клітин Пуркіньє – 484,48 ± 94,5 мкм3. Виходячи із середніх показників об’єму перикаріона нервових клітин та їх ядер, ядерно-цитоплазматичне відношення відповідно становить 0,079 ± 0,002. У результаті проведених нами морфометричних досліджень архітектонічних шарів у порівняльному аспекті встановлено, що найбільша товщина кори мозочка ВРХ властива його молекулярному шару – 413,01 ± 10,84 мкм (53,2%), дещо менша вона у зернистому – 313,60 ± 13,84 мкм (40,4%) і найменша у гангліонарному – 49,03 ± 1,94 мкм (6,32%). Загальна товщина кори мозочка у великої рогатої худоби складає 775,64 ± 26,62 мкм.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.