This research paper analyzes the effects of material properties on surface roughness, material removal rate, and tool wear on high speed CNC end milling process with various ferrous and nonferrous materials. The challenge of material specific decision on the process parameters of spindle speed, feed rate, depth of cut, coolant flow rate, cutting tool material, and type of coating for the cutting tool for required quality and quantity of production is addressed. Generally, decision made by the operator on floor is based on suggested values of the tool manufacturer or by trial and error method. This paper describes effect of various parameters on the surface roughness characteristics of the precision machining part. The prediction method suggested is based on various experimental analysis of parameters in different compositions of input conditions which would benefit the industry on standardization of high speed CNC end milling processes. The results show a basis for selection of parameters to get better results of surface roughness values as predicted by the case study results.
In this changing global scenario, modification, transplantation, and replacement can be the eternal solution for most of the problems in the medical field. Hence replacement technique finds a very prominent place in medicine as a remedy having closely tied up with biomechanics. One of the most important joints in the human body is the hip joint, the big and complex joint. Many researches were conducted and many are in progress, but most of these works use simplified models with either 2D or 3D approaches. The hip joint is formed by four components like femoral head cortical bone, stem, and neck. In this system we can find orthotropic and isotropic materials working together. The main objective of this research is to develop a three dimensional surface and solid finite element model of the hip joint to predict stresses in its individual components. This model is a geometric non-linear model, which helps us understand its structural mechanical behavior, seeming to suggest with advanced research in the future new hip joint prosthesis, as well as to prove the prosthesis joint interaction before being implanted in the patient. This research explains a complete human hip joint model without cartilaginous tissue, using ANSYS 10.0 Multiphysics Analysis for nine different postures in hip joint using three different materials (CoCr, Ti6Al4V, and UHMWPE) to calculate fatigue life. The result obtained from the analysis of surface model and solid model serve to help in predicting the life cycle, surface characteristics, shear stress in XY plane, stress concentration and areas that are prone to failure. Von Mises stress on the surface of our model facilitates us to equip and design an optimized prosthesis device having unique materials composition , with a highly bio-compatible and durable alloy at a low cost could be produced. In this way, a first important step towards the structural characterization of human hip joint has been developed.
All the loads generated by other components of heavy vehicle are transferred to its chassis. Chassis related failures are few but the damages to the safety of occupant are huge; sometimes it leads to fatal accidents. In order to overcome this, the chassis has to be optimized based on static and dynamic loads by ensuring a uniform distribution of stress and strain. The shape and cross section of the chassis gives a resistance to the above mentioned loads. The cross section of the chassis structure of all on-road vehicles is uniform despite the variable loads. In this work, variable cross section chassis of an on-road heavy vehicle is designed by keeping optimum sections. Bending moment of the chassis has been mathematically related with section modulus of the chassis. Genetic algorithm based procedures have been used to optimize the height, width and thickness of the chassis cross section. Coding in C language is used to automate the genetic algorithm procedures. For benchmark study, 3D models of optimized and existing chassis of an on-road heavy vehicle were developed. Finite element analysis reveals that the optimized chassis has less failure possibilities due to lower stress values and uniform distribution when compared to those from the model of existing chassis.
Crucible frame structures are otherwise called as complex frame structures and its study is needed for further improvement in the emerging technology. The frame structure are frequently used an operational system support of other mechanisms of a physical construction and/or steel frame that limits the assembly's extent in this study crucible frame structures are analysed using Finite element analysis and the results are expected in terms of safety for actual use. Based on ANSYS Software, the crucible structure can be meshed (discretized into several parts are called elements). At last, we can apply the boundary conditions and calculate its maximum deformation by applying various loads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.