Interactions within natural soils have often been neglected when assessing fate and bioavailability of engineered nanomaterials (ENM) in soils. This review combines patchwise ENM research using natural soils with the much wider literature on ENM performed in standard tests or on the fate of colloids in soils, and an analysis of the diverse ENM characteristics determining availability from the soil organisms' perspective to assess the main soil characteristics that determine the fate, speciation, and ultimately bioavailability of ENM in natural soils. Predominantly salinity, texture, pH, concentration, and nature of mobile organic compounds and degree of saturation determine ENM bioavailability.
One of the key components for environmental risk assessment of engineered nanomaterials (ENMs) is data on bioaccumulation potential. Accurately measuring bioaccumulation can be critical for regulatory decision making regarding material hazard and risk, and for understanding the mechanism of toxicity. This perspective provides expert guidance for performing ENM bioaccumulation measurements across a broad range of test organisms and species. To accomplish this aim, we critically evaluated ENM bioaccumulation within three categories of organisms: single-celled species, multicellular species excluding plants, and multicellular plants. For aqueous exposures of suspended single-celled and small multicellular species, it is critical to perform a robust procedure to separate suspended ENMs and small organisms to avoid overestimating bioaccumulation. For many multicellular organisms, it is essential to differentiate between the ENMs adsorbed to external surfaces or in the digestive tract and the amount absorbed across epithelial tissues. For multicellular plants, key considerations include how exposure route and the role of the rhizosphere may affect the quantitative measurement of uptake, and that the efficiency of washing procedures to remove loosely attached ENMs to the roots is not well understood. Within each organism category, case studies are provided to illustrate key methodological considerations for conducting robust bioaccumulation experiments for different species within each major group. The full scope of ENM bioaccumulation measurements and interpretations are discussed including conducting the organism exposure, separating organisms from the ENMs in the test media after exposure, analytical methods to quantify ENMs in the tissues or cells, and modeling the ENM bioaccumulation results. One key finding to improve bioaccumulation measurements was the critical need for further analytical method development to identify and quantify ENMs in complex matrices. Overall, the discussion, suggestions, and case studies described herein will help improve the robustness of ENM bioaccumulation studies.
In this paper, we investigate the applicability of experimental model ecosystems (microcosms and mesocosms) for the ecological risk assessment of veterinary medicinal products (VMPs). VMPs are used in large quantities, but the assessment of associated risks to the environment is limited, although they are continually infused into the environment via a number of routes. It is argued that the experience obtained by pesticide research largely can be used when evaluating VMPs, although there are several major differences between pesticides and pharmaceuticals (e.g., knowledge of their mechanisms of action on nontarget organisms). Also, because microorganisms are often the target organisms of VMPs, risk assessment should focus more on endpoints describing functional processes. This paper provides a review of the current risk assessment schemes of Europe and North America along with examples of experiments already performed with veterinary medicinal products in aquatic and terrestrial ecosystem models. We suggest that some of the approaches developed for pesticide risk assessment can be used for VMPs and offer suggestions for the development of a framework for ecological risk assessment of VMPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.