Diabetic retinopathy (DR) is one of the leading causes of blindness in the working population worldwide. Vascular leakage, angiogenesis and neuronal degeneration are key features of DR. Current effective interventions for DR include treatment of systemic risk factors such as elevated blood glucose, blood pressure and dyslipidemia. Ocular treatments include vascular endothelial growth factor A (VEGF-A) inhibitors, laser photocoagulation and surgery. While anti-VEGF therapy has become as first-line treatment for diabetic macular edema (DME) that causes reduced vision, intravitreal glucocorticoids also have been shown to be efficacious in this situation. It has been reported that all the major pathological processes of DR are susceptible to glucocorticoid treatment. The effects of glucocorticoids on vascular leakage and angiogenesis may be mediated through their well established anti-inflammatory role. Alternatively, glucocorticoids may affect other mechanisms known to be activated in DR. Potential mechanisms for the anti-inflammatory effects of glucocorticoids include blockage of cytokine production and inhibition of leukocyte adhesion induced by VEGF-A. Glucocorticoids decrease the expression of VEGF-A directly, and increase the production, or decrease phosphorylation, of tight junction-associated proteins. Glucocorticoids have also been shown to be neuroprotective, in contrast to VEGF-A inhibitors which animal studies suggest may be neurotoxic. This review outlines the biological properties of synthetic glucocorticoids, with particular emphasis on the potential beneficial effect of combining glucocorticoids with anti-VEGF treatment for DME and DR.
Efonidipine hydrochloride is an antihypertensive and antianginal agent with fewer side effects and is better tolerated in the treatment of hypertension with renal impairment. Its interaction with bovine serum albumin (BSA) is of great use for the understanding of the pharmacokinetic and pharmacodynamic mechanisms of the drug. The binding of efonidipine to BSA was investigated by fluorescence spectroscopy and circular dichroism. BSA fluorescence was quenched by efonidipine, due to the fact that efonidipine quenched the fluorescence of tryptophan residues mainly by the collision mode. The thermodynamic parameters ∆H 0 and ∆S 0 were 68.04 kJ/mol and 319.42 J·mol -1 ·K -1 , respectively, indicating that the hydrophobic interactions played a major role. The results of circular dichroism and synchronous fluorescence measurements showed that the binding of efonidipine to BSA led to a conformational change of BSA. The fraction of occupied sites (θ) for the 8-anilino-1-naphthaleinsulfonic acid (ANS)-BSA system is 85%, whereas for the NZ-105-BSA system, it is 53%, which suggests that the interaction of ANS with BSA is stronger than that of NZ-105 with BSA. Binding studies in the presence of ANS indicated that efonidipine competed with ANS for hydrophobic sites of BSA. The effects of metal ions on the binding constant of the efonidipine-BSA complex were also investigated. The presence of metal ions Zn 2+ , Mg 2+ , Al 3+ , K + , and Ca 2+ increased the binding constant of efonidipine-BSA complex, which may prolong the storage period of NZ-105 in blood plasma and enhance its maximum effects.
TiO2 nanotube surfaces, especially of 80 nm TiO2 nanotube, reduced inflammatory response in vitro, which might be part of a basis for rapid osseointegration in implants with TiO2 nanotube surfaces in animal studies.
Eyes with normal pressure glaucoma and eyes with high pressure glaucoma show a similar optic disc appearance with marked differences to eyes with vascular optic neuropathy. Non-vascular, potentially barotraumatic factors in addition to intraocular pressure (IOP) may thus play a role in glaucoma. Recent studies have shown that cerebrospinal fluid pressure (CSFP), arterial blood pressure and IOP are correlated with each other, higher CSFP is associated with younger age, higher blood pressure and higher body mass index, some patients with normal (IOP) pressure glaucoma have abnormally low CSFP and thus an abnormally high trans-lamina cribrosa pressure difference and a small orbital CSF space, the orbital CSF space width is associated with CSFP and the estimated CSFP correlated better with open-angle glaucoma-related parameters than IOP. The orbital CSFP as counter-pressure against IOP may play a role in the pathogenesis of glaucoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.