Two-component signaling elements play important roles in plants, including a central role in cytokinin signaling. We characterized two-component elements from the monocot rice (Oryza sativa) using several complementary approaches. Phylogenetic analysis reveals relatively simple orthologous relationships among the histidine kinases in rice and Arabidopsis (Arabidopsis thaliana). In contrast, the histidine-containing phosphotransfer proteins (OsHPs) and response regulators (OsRRs) display a higher degree of lineage-specific expansion. The intracellular localizations of several OsHPs and OsRRs were examined in rice and generally found to correspond to the localizations of their dicot counterparts. The functionality of rice type-B OsRRs was tested in Arabidopsis; one from a clade composed of both monocot and dicot type-B OsRRs complemented an Arabidopsis type-B response regulator mutant, but a type-B OsRR from a monocot-specific subfamily generally did not. The expression of genes encoding two-component elements and proteins involved in cytokinin biosynthesis and degradation was analyzed in rice roots and shoots and in response to phytohormones. Nearly all type-A OsRRs and OsHK4 were up-regulated in response to cytokinin, but other cytokinin signaling elements were not appreciably affected. Furthermore, multiple cytokinin oxidase (OsCKX) genes were up-regulated by cytokinin. Abscisic acid treatment decreased the expression of several genes involved in cytokinin biosynthesis and degradation. Auxin affected the expression of a few genes; brassinosteroid and gibberellin had only modest effects. Our results support a shared role for two-component elements in mediating cytokinin signaling in monocots and dicots and reveal how phytohormones can impact cytokinin function through modulating gene expression.
The power of forward genetics in yeast is the foundation on which the field of autophagy research firmly stands. Complementary work on autophagy in higher eukaryotes has revealed both the deep conservation of this process, as well as novel mechanisms by which autophagy is regulated in the context of development, immunity, and neuronal homeostasis. The recent emergence of new clustered regularly interspaced palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-based technologies has begun facilitating efforts to define novel autophagy factors and pathways by forward genetic screening in mammalian cells. Here, we set out to develop an expanded toolkit of autophagy reporters amenable to CRISPR/Cas9 screening. Genome-wide screening of our reporters in mammalian cells recovered virtually all known autophagy-related (ATG) factors as well as previously uncharacterized factors, including vacuolar protein sorting 37 homolog A (VPS37A), transmembrane protein 251 (TMEM251), amyotrophic lateral sclerosis 2 (ALS2), and TMEM41B. To validate this data set, we used quantitative microscopy and biochemical analyses to show that 1 novel hit, TMEM41B, is required for phagophore maturation. TMEM41B is an integral endoplasmic reticulum (ER) membrane protein distantly related to the established autophagy factor vacuole membrane protein 1 (VMP1), and our data show that these two factors play related, albeit not fully overlapping, roles in autophagosome biogenesis. In sum, our work uncovers new ATG factors, reveals a malleable network of autophagy receptor genetic interactions, and provides a valuable resource ( http://crispr.deniclab.com ) for further mining of novel autophagy mechanisms.
Summary Hundreds of tail-anchored (TA) proteins, including SNAREs involved in vesicle fusion, are inserted post-translationally into the endoplasmic reticulum (ER) membrane by a dedicated protein targeting pathway1–4. Prior to insertion, the C-terminal transmembrane domains (TMDs) of TA proteins are shielded in the cytosol by the conserved targeting factor Get3 (in yeast; TRC40 in mammals)5–7. The Get3 ER receptor comprises the cytosolic domains of the Get1/2 (WRB/CAML) transmembrane complex, which interact individually with the targeting factor to drive a conformational change that enables substrate release and, as a consequence insertion8–11. Because TA protein insertion is not associated with significant translocation of hydrophilic protein sequences across the membrane, it remains possible that Get1/2 cytosolic domains are sufficient to place Get3 in proximity with the ER lipid bilayer and permit spontaneous insertion to occur12,13. In this study, we used cell reporters and biochemical reconstitution to define mutations in the Get1/2 transmembrane domain that disrupted TA protein insertion without interfering with Get1/2 cytosolic domain function. These mutations reveal a novel Get1/2 insertase function, in the absence of which substrates prefer to stay bound to Get3 despite their proximity to the lipid bilayer; as a consequence, spontaneous TMD insertion is non sequitur. Instead, the Get1/2 transmembrane domain helps release substrates from Get3 by capturing their TMDs and these transmembrane interactions define a bona fide pre-integrated intermediate along a facilitated route for tail anchor entry into the lipid bilayer. Our work sheds light on the fundamental point of convergence between co-translational and post-translational ER membrane protein targeting and insertion: a mechanism for reducing the ability of a targeting factor to shield its substrates enables substrate hand over to a TMD-docking site embedded in the ER membrane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.