Two-component signaling elements play important roles in plants, including a central role in cytokinin signaling. We characterized two-component elements from the monocot rice (Oryza sativa) using several complementary approaches. Phylogenetic analysis reveals relatively simple orthologous relationships among the histidine kinases in rice and Arabidopsis (Arabidopsis thaliana). In contrast, the histidine-containing phosphotransfer proteins (OsHPs) and response regulators (OsRRs) display a higher degree of lineage-specific expansion. The intracellular localizations of several OsHPs and OsRRs were examined in rice and generally found to correspond to the localizations of their dicot counterparts. The functionality of rice type-B OsRRs was tested in Arabidopsis; one from a clade composed of both monocot and dicot type-B OsRRs complemented an Arabidopsis type-B response regulator mutant, but a type-B OsRR from a monocot-specific subfamily generally did not. The expression of genes encoding two-component elements and proteins involved in cytokinin biosynthesis and degradation was analyzed in rice roots and shoots and in response to phytohormones. Nearly all type-A OsRRs and OsHK4 were up-regulated in response to cytokinin, but other cytokinin signaling elements were not appreciably affected. Furthermore, multiple cytokinin oxidase (OsCKX) genes were up-regulated by cytokinin. Abscisic acid treatment decreased the expression of several genes involved in cytokinin biosynthesis and degradation. Auxin affected the expression of a few genes; brassinosteroid and gibberellin had only modest effects. Our results support a shared role for two-component elements in mediating cytokinin signaling in monocots and dicots and reveal how phytohormones can impact cytokinin function through modulating gene expression.
The present study examined the response of antioxidant systems to NaCl stress and the relative importance of Na 1 and Clin NaCl-induced antioxidant systems in roots of rice seedlings. NaCl treatment caused an increase in the activities of ascorbate peroxidase (APX) and glutathione reductase (GR) in roots of rice seedlings, but had no effect on the activities of superoxide dismutase (SOD) and catalase (CAT). There were detectable differences in APX and GR isoenzymes between control and NaCl-treated roots. Levels of activity for SOD and CAT isoenzymes did not change in NaCl-stressed roots compared with the control roots. NaCl treatment produced an increase in H 2 O 2 , ascorbate (AsA), dehydro-ascorbate (DHA), reduced glutathione (GSH), and oxidized glutathione (GSSG) levels. Treatment with 50 mM Na-gluconate (whose anion is not permeable to membrane) led to a similar Na 1 level in roots to that with 100 mM NaCl. It was found that treatment with 50 mM Na-gluconate affected H 2 O 2 , AsA, and DHA levels, APX and GR activities, OsAPX and OsGR mRNA induction in the same way as 100 mM NaCl. These observed changes seem to be mediated by Na 1 toxicity and not by Cltoxicity. On the other hand, it was found that NaCl, but not Na-gluconate and NaNO 3 , caused an increase in GSH and GSSG levels, indicating that Cl -, rather than Na 1 , is responsible for the NaCl-increased GSH and GSSG levels in roots of rice seedlings.
In plants, flowering is a critical developmental transition orchestrated by four regulatory pathways. Distinct alleles encoding mutant forms of the Arabidopsis potential calcium sensor CML24 cause alterations in flowering time. CML24 can act as a switch in the response to day length perception; loss-of-function cml24 mutants are late flowering under long days, whereas apparent gain of CML24 function results in early flowering. CML24 function is required for proper CONSTANS (CO) expression; components upstream of CO in the photoperiod pathway are largely unaffected in the cml24 mutants. In conjunction with CML23, a related calmodulin-like protein, CML24 also inhibits FLOWERING LOCUS C (FLC) expression and therefore impacts the autonomous regulatory pathway of the transition to flowering. Nitric oxide (NO) levels are elevated in cml23/cml24 double mutants and are largely responsible for FLC transcript accumulation. Therefore, CML23 and CML24 are potential calcium sensors that have partially overlapping function that may act to transduce calcium signals to regulate NO accumulation. In turn, NO levels influence the transition to flowering through both the photoperiod and autonomous regulatory pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.