Cobalt oxide nanopowders are synthesized by the pyrolysis of aerosol particles of water solution of cobalt acetate. Cobalt nanopowder is obtained by subsequent reduction of obtained cobalt oxide by annealing under a hydrogen atmosphere. The average crystallite size of the synthesized porous particles ranged from 7 to 30 nm, depending on the synthesis temperature. The electrochemical characteristics of electrodes based on synthesized cobalt oxide and reduced cobalt oxide are investigated in an electrochemical cell using a 3.5 M KOH solution as the electrolyte. The results of electrochemical measurements show that the electrode based on reduced cobalt oxide (Re-Co3O4) exhibits significantly higher capacity, and lower Faradaic charge–transfer and ion diffusion resistances when compared to the electrodes based on the initial cobalt oxide Co3O4. This observed effect is mainly due to a wide range of reversible redox transitions such as Co(II) ↔ Co(III) and Co(III) ↔ Co(IV) associated with different cobalt oxide/hydroxide species formed on the surface of metal particles during the cell operation; the small thickness of the oxide/hydroxide layer providing a high reaction rate, and also the presence of a metal skeleton leading to a low series resistance of the electrode.
This article studies a nanoproduct that is formed by simultaneous plasma-chemical evaporation of graphite and platinum. It was shown that the resulting deposits under different synthesis conditions have a similar and well-defined structure and consist of two main parts (core and enclosing bark). The structure of both parts is investigated at the micro-and nanoscale levels. The products of synthesis and similar products obtained without the use of platinum has been compared. The distribution of platinum in synthesis products is studied. It is proved that the atoms of the platinum catalyst influence the process of formation of the deposit. Namely, it stimulates the formation of a deposit where the deposit core containing platinumcontaining bundles of CNT exists as an independent core that does not have a strong connection with the deposit shell. It is found that differential-thermal analysis of CNM in air by the methods of TG, DTG, DTA allows to reveal insignificant differences in the heat resistance of different carbon nanostructures, and thus it can be used for their identification. Such studies are of great importance for the synthesis of platinumcontaining catalysts for fuel cells and other chemical industries.
Carbon nanostructures (CNS) were synthesized by the electric arc plasma chemical method during the evaporation of a high-quality graphite electrode of the brand “fine-grained dense graphite” (FGDG-7) filled with a catalyst (Pt), which was evaporated in a helium environment. In the synthesis process, the following were synthesized: multi-walled (MWCNT) and single-walled carbon nanotubes (SWCNT), fullerenes, graphene packets and nanocomposites. A deposit in the form of growth on the cathode electrode was also synthesized. All synthesis products were analyzed at the micro- and nanolevels, which made it possible to analyze the influence of platinum vapors on the formation of carbon nanomaterials (CNM). The non-uniform distribution of catalyst atoms (platinum) in the products of electrochemical synthesis in a gas medium using FGDG-7 graphite was investigated. During the analysis, it was found that platinum is in the state of the face-centered cubic (FCC) lattice and is distributed in the synthesis products as follows: the core of the deposit is less than < 0.001 %, the shell of the deposit is less than < 1 %, the wall soot is more than > 1 %. The morphology and composition of the platinum deposit, which has a hexagonal graphite structure with an admixture of a rhombohedral graphite phase, was studied. In the studies, differential thermal analysis in air (TG, DTG, DTA) was carried out, which made it possible to identify the composition of the synthesis products. It is an established fact that the parts of the deposit with platinum are more heat-resistant compared to the deposit components that do not contain Pt. The resulting carbon nanotubes (CNTs) in diameter (5–25 nm) and length (1.5–2 μm) do not differ from those obtained without the participation of platinum, except for some anomalies. When studying the suitability of platinum-containing carbon nanostructures for 3D printing of CJP (ceramic printing) technology, it was found that for the use of platinum-containing carbon black, it is necessary to carry out a preliminary short-term treatment, namely, grinding in special “ball mills” or rubbing through a fine sieve with minimal effort to create uniformity product. Previous studies have shown that such platinum-containing carbon nanostructures can already be used in 3D printing of CJP technology, or to create new composites for 3D printing technologies of FDM, SLA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.