Using the dielectric function method, the effective interaction potential between ions in a dense semiclassical plasma is investigated. For the case of a partially ionized strongly coupled plasma, the effective potential of charge-unperturbed atom interaction is presented. Both effective potentials are screened. To obtain these potentials the dielectric function is used, taking into account the quantum diffraction effects in electron-electron interactions.
In this article a dense nonideal, nonisothermal plasma is considered. New effective screened interaction potentials taking into account quantum-mechanical diffraction and symmetry effects have been obtained. The effective potential of the ion-ion interaction in plasmas with a strongly coupled ion subsystem and semiclassical electron subsystem is presented. Based on the obtained effective potentials the analytical expressions for internal energy and the pressure of the considered plasma were obtained.
Cobalt oxide nanopowders are synthesized by the pyrolysis of aerosol particles of water solution of cobalt acetate. Cobalt nanopowder is obtained by subsequent reduction of obtained cobalt oxide by annealing under a hydrogen atmosphere. The average crystallite size of the synthesized porous particles ranged from 7 to 30 nm, depending on the synthesis temperature. The electrochemical characteristics of electrodes based on synthesized cobalt oxide and reduced cobalt oxide are investigated in an electrochemical cell using a 3.5 M KOH solution as the electrolyte. The results of electrochemical measurements show that the electrode based on reduced cobalt oxide (Re-Co3O4) exhibits significantly higher capacity, and lower Faradaic charge–transfer and ion diffusion resistances when compared to the electrodes based on the initial cobalt oxide Co3O4. This observed effect is mainly due to a wide range of reversible redox transitions such as Co(II) ↔ Co(III) and Co(III) ↔ Co(IV) associated with different cobalt oxide/hydroxide species formed on the surface of metal particles during the cell operation; the small thickness of the oxide/hydroxide layer providing a high reaction rate, and also the presence of a metal skeleton leading to a low series resistance of the electrode.
In this paper, the effective interaction potential in two component semiclassical plasma, taking into account the long-range screening and the quantum-mechanical diffraction effects at short distances, is obtained on the basis of dielectric response function method. The structural properties of the semiclassical plasma are considered. The thermodynamic characteristics (the internal energy and the equation of state) are calculated using two methods: the method of effective potentials and the method of micropotentials with screening effect taken into account by the Ornstein-Zernike equation in the HNC approximation. V C 2014 AIP Publishing LLC.
Investigation of the physical properties of carbon nanowall (CNW) films is carried out in correlation with the growth time. The structural, electronic, optical and electrical properties of CNW films are investigated using electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, UV–Vis spectroscopy, Hall Effect measurement system, Four Point Probing system, and thermoelectric measurements. Shorter growth time results in thinner CNW films with a densely spaced labyrinth structure, while a longer growth time results in thicker CNW films with a petal structure. These changes in morphology further lead to changes in the structural, optical, and electrical properties of the CNW.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.