Prospects for the development of devices for visualizing terahertz (THz) radiation sources can be associated with the use of the results of old studies (1965)(1966)(1967)(1968)(1969)(1970)(1971)(1972)(1973)(1974)(1975)(1976)(1977)(1978) on the absorption of THz radiation by metal nanoparticles. This "renaissance" demonstrates that metallic nanoparticles can be used as nanotransducers of invisible THz radiation to infrared (IR) radiation detectable by a commercial IR camera. The investigated THz-to-IR converters are matrices that are transparent both in the THz radiation range to be visualized and in the operating range of the IR camera; matrices contain embedded metal nanoparticles. The latter, when irradiated with THz rays, convert the energy of THz photons into heat and become nanosources of IR radiation for the IR camera. In metal nanoparticles, the mechanisms of absorption of THz radiation and its conversion into heat are realized through dissipation of the energy of THz photons due to multiple scattering of electrons, as well as because of excitation of two types of phonons (transverse and longitudinal ones). The conversion of THz energy into the energy of transverse phonons occurs directly, while dissipation and excitation of longitudinal phonons occurs indirectly, through the excitation of Fermi electrons. Polyvinylchloride (PVC) was chosen as the matrix material, and gold nanoparticles were chosen as nanoparticles-fillers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.