Heatwaves detrimentally affect human health and ecosystems. While previous studies focused on either temporal changes or spatial extents of heatwaves, their spatiotemporal contiguity and propagation patterns are unclear. Here, we investigate the climatology, long-term trends, and interannual variations of spatiotemporally contiguous heatwaves across China during 1961 to 2018. Two distinct propagation patterns are identified by introducing a spatiotemporally contiguous events tracking (SCET) method and the k-means clustering. Type 1 contiguous heatwaves mostly generate over eastern China and move southwestward at shorter distances, while Type 2 heatwaves generally initiate over western China and move southeastward at longer distances, with stronger intensity, longer lifetime, and larger coverage. Since the 1960s, both types exhibit significant increases in frequency, intensity, coverage, lifetime, and traveling distances, with relatively larger magnitudes for Type 2, but significant decreases in moving speed only appear for Type 1. On interannual timescale, preceding winter El Niño prolongs the duration and slows down the moving speed of Type 1 through the western North Pacific subtropical high. Type 2 contiguous heatwaves are intensified by the negative spring North Atlantic Oscillation via the upper-atmospheric Rossby wave train.
The correlation characteristics between anomalous changes in summer precipitation on the Qinghai–Tibet Plateau (QTP) and the high-impact areas of global sea-surface temperature (SST) are mainly studied in this paper. The results show that the interdecadal change of the regional “warming-wetting” in China is especially prominent in the northern part of the main body of the QTP, which is therefore identified as the high-value area of precipitation variability. Investigations have revealed that the high-value areas of summer precipitation variability in the northern QTP are significantly correlated with four high-value areas of SST variability, namely the western North Pacific, the western Central Pacific, the Southwest Pacific, and the central Indian Ocean. In these four high-impact areas, a synchronous tendency is found in the SST increase and sea-surface specific humidity. Through the tracking analysis of the correlated vectors of the water vapor source for the warming-wetting of the QTP, it further confirms that the four high-value areas of SST variability in the Indo-Pacific Ocean are the major impact sources of water vapor transport for the warming-wetting of the QTP. Moreover, the comparison of the characteristics of various interdecadal global water vapor transport circulations show that from 1991 to 2020, the trans-equatorial water vapor transport from the Southern Hemisphere witnessed a notable increase, which furthermore suggests that the interdecadal change of SST increase in the Southwest Pacific and central Indian Ocean is the key reason for the warming-wetting of the QTP. In addition, a comprehensive image of high-impact marine water vapor sources for modulating the warming-wetting tendency in the QTP is proposed.
The correlation characteristics between anomalous changes in summer precipitation on the Qinghai–Tibet Plateau (QTP) and the high-impact areas of global sea-surface temperature (SST) are mainly studied in this paper. The results show that the interdecadal change of the regional “warming-wetting” in China is especially prominent in the northern part of the main body of the QTP, which is therefore identified as the high-value area of precipitation variability. Investigations have revealed that the high-value areas of summer precipitation variability in the northern QTP are significantly correlated with four high-value areas of SST variability, namely the western North Pacific, the western Central Pacific, the Southwest Pacific, and the central Indian Ocean. In these four high-impact areas, a synchronous tendency is found in the SST increase and sea-surface specific humidity. Through the tracking analysis of the correlated vectors of the water vapor source for the warming-wetting of the QTP, it further confirms that the four high-value areas of SST variability in the Indo-Pacific Ocean are the major impact sources of water vapor transport for the warming-wetting of the QTP. Moreover, the characteristics of various interdecadal global water vapor transport circulations are compared, and the results show that from 1991 to 2020, the trans-equatorial water vapor transport from the Southern Hemisphere witnessed a notable increase, which furthermore suggests that the interdecadal change of SST increase in the Southwest Pacific and central Indian Ocean is the key reason for the warming-wetting of the QTP. In addition, a comprehensive image of high-impact marine water vapor sources for modulating the warming-wetting tendency in the QTP is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.