Astrocytes are a unique brain cell-storing glycogen and express lysophosphatidic acid (LPA) receptors. Gintonin is a ginseng-derived exogenous G protein-coupled LPA receptor ligand. Accumulating evidence shows that astrocytes serve as an energy supplier to neurons through astrocytic glycogenolysis under physiological and pathophysiological conditions. However, little is known about the relationships between LPA receptors and astrocytic glycogenolysis or about the roles of LPA receptors in hypoxia and re-oxygenation stresses. In the present study, we examined the functions of gintonin-mediated astrocytic glycogenolysis in adenosine triphosphate (ATP) production, glutamate uptake, and cell viability under normoxic, hypoxic, and re-oxygenation conditions. The application of gintonin or LPA to astrocytes induced glycogenolysis in concentration- and time-dependent manners. The stimulation of gintonin-mediated astrocytic glycogenolysis was achieved through the LPA receptor-Gα protein-phospholipase C-inositol 1,4,5-trisphosphate receptor-intracellular calcium ([Ca]) transient pathway. Gintonin treatment to astrocytes increased the phosphorylation of brain phosphorylase kinase, with sensitive manner to K252a, an inhibitor of phosphorylase kinase. Gintonin-mediated astrocytic glycogenolysis was blocked by isofagomine, a glycogen phosphorylase inhibitor. Gintonin additionally increased astrocytic glycogenolysis under hypoxic and re-oxygenation conditions. Moreover, gintonin increased ATP production, glutamate uptake, and cell viability under the hypoxic and re-oxygenation conditions. Collectively, we found that the gintonin-mediated [Ca] transients regulated by LPA receptors were coupled to astrocytic glycogenolysis and that stimulation of gintonin-mediated astrocytic glycogenolysis was coupled to ATP production and glutamate uptake under hypoxic and re-oxygenation conditions, ultimately protecting astrocytes. Hence, the gintonin-mediated astrocytic energy that is modulated via LPA receptors helps to protect astrocytes under hypoxia and re-oxygenation stresses.
Gintonin is a newly discovered component of ginseng and acts as a ligand for G protein-coupled lysophosphatidic acid (LPA) receptors. It is currently unclear whether gintonin has skin-related effects. Here, we examined the effects of a gintonin-enriched fraction (GEF) on [Ca2+]i transient induction in human dermal fibroblasts (HDFs). We found that GEF treatment transiently induced [Ca2+]i in a dose-dependent manner. GEF also increased cell viability and proliferation, which could be blocked by Ki16425, an LPA1/3 receptor antagonist, or 1,2-Bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid tetrakis(acetoxymethyl ester) (BAPTA-AM), a calcium chelator. We further found that GEF stimulated hyaluronic acid (HA) release from HDFs in a dose- and time-dependent manner, which could be attenuated by Ki16425, U73122, a phospholipase C inhibitor, 2-Aminoethoxydiphenyl borate (2-APB), an IP3 receptor antagonist, and BAPTA-AM. Moreover, we found that GEF increased HA synthase 1 (HAS1) expression in a time-dependent manner. We also found that GEF stimulates collagen release and the expression of collagen 1, 3, and 7 synthases in a time-dependent manner. GEF-mediated collagen synthesis could be blocked by Ki16425, U73122, 2-APB, and BAPTA-AM. GEF treatment also increased the mRNA levels of LPA1-6 receptor subtypes at 8 h and increased the protein levels of LPA1-6 receptor subtypes at 8 h. Overall, these results indicate that the GEF-mediated transient induction of [Ca2+]i is coupled to HA and collagen release from HDFs via LPA receptor regulations. We can, thus, conclude that GEF might exert a beneficial effect on human skin physiology via LPA receptors.
Background
Gintonin is a ginseng-derived exogenous ligand of the G protein-coupled lysophosphatidic acid (LPA) receptor. We previously reported that gintonin stimulates gliotransmitter release in primary cortical astrocytes. Astrocytes play key roles in the functions of neurovascular systems. Although vascular endothelial growth factor (VEGF) is known to influence the normal growth and maintenance of cranial blood vessels and the nervous system, there is little information about the effect of gintonin on VEGF regulation in primary astrocytes, under normal and hypoxic conditions.
Methods
Using primary cortical astrocytes of mice, the effects of gintonin on the release, expression, and distribution of VEGF were examined. We further investigated whether the gintonin-mediated VEGF release protects astrocytes from hypoxia.
Results
Gintonin administration stimulated the release and expression of VEGF from astrocytes in a concentration- and time-dependent manner. The gintonin-mediated increase in the release of VEGF was inhibited by the LPA1/3 receptor antagonist, Ki16425; phospholipase C inhibitor, U73122; inositol 1,4,5-triphosphate receptor antagonist, 2-APB; and intracellular Ca
2+
chelator, BAPTA. Hypoxia further stimulated astrocytic VEGF release. Gintonin treatment stimulated additional VEGF release and restored cell viability that had decreased due to hypoxia, via the VEGF receptor pathway. Altogether, the regulation of VEGF release and expression and astrocytic protection mediated by gintonin under hypoxia are achieved via the LPA receptor–VEGF signaling pathways.
Conclusion
The present study shows that the gintonin-mediated regulation of VEGF in cortical astrocytes might be neuroprotective against hypoxic insults and could explain the molecular basis of the beneficial effects of ginseng on the central nervous system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.