Anisotropic gold nanoparticles (AuNPs) have attracted the interest of scientists for over a century, but research in this field has considerably accelerated since 2000 with the synthesis of numerous 1D, 2D, and 3D shapes as well as hollow AuNP structures. The anisotropy of these nonspherical, hollow, and nanoshell AuNP structures is the source of the plasmon absorption in the visible region as well as in the near-infrared (NIR) region. This NIR absorption is especially sensitive to the AuNP shape and medium and can be shifted towards the part of the NIR region in which living tissue shows minimum absorption. This has led to crucial applications in medical diagnostics and therapy ("theranostics"), especially with Au nanoshells, nanorods, hollow nanospheres, and nanocubes. In addition, Au nanowires (AuNWs) can be synthesized with longitudinal dimensions of several tens of micrometers and can serve as plasmon waveguides for sophisticated optical devices. The application of anisotropic AuNPs has rapidly spread to optical, biomedical, and catalytic areas. In this Review, a brief historical survey is given, followed by a summary of the synthetic modes, variety of shapes, applications, and toxicity issues of this fast-growing class of nanomaterials.
Two new water-soluble 1,2,3-triazole-containing nona-PEG-branched dendrimers are obtained with nine intradendritic 1,2,3-triazoles (trz). Addition of HAuCl4 in water to these dendrimers quantitatively leads to the intradendritic formation of AuCl3(trz) moieties subsequent to complete Cl(-) substitution by trz on Au(III), whereas the analogous complexation reaction of AuCl3 with a linear PEG trz ligand forms only an equilibrium between trz-coordinated Au(III) and Au(III) that is not coordinated to trz. Reduction of the dendrimer-Au(III) complexes to Au(0) by NaBH4 then leads to stabilization of gold nanoparticles (AuNPs) in water. The sizes of the AuNPs stabilized by the dendritic macromolecules are further controlled between 1.8 and 12 nm upon selecting the stoichiometry of Au(III) addition per dendritic trz followed by NaBH4 reduction. With a 1:1 Au/trz stoichiometry, the AuNP size depends on the length of the PEG tether of the dendrimer; small dendrimer-encapsulated AuNPs are formed with PEG2000, whereas large AuNPs are formed with PEG550. With Au/trz stoichiometries larger than unity, Au(III) is reduced outside the macromolecule, resulting in the formation of large interdendritically stabilized AuNPs. The formation of very small and only mildly stabilized AuNPs by neutral hydrophilic triazole ligands offers an opportunity for very efficient p-nitrophenol reduction by NaBH4 in water at the AuNP surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.