The non‐conventional oleaginous yeast Yarrowia lipolytica is able to utilize both hydrophilic and hydrophobic carbon sources as substrates and convert them into value‐added bioproducts such as organic acids, extracellular proteins, wax esters, long‐chain diacids, fatty acid ethyl esters, carotenoids and omega‐3 fatty acids. Metabolic pathway analysis and previous research results show that hydrophobic substrates are potentially more preferred by Y. lipolytica than hydrophilic substrates to make high‐value products at higher productivity, titer, rate, and yield. Hence, Y. lipolytica is becoming an efficient and promising biomanufacturing platform due to its capabilities in biosynthesis of extracellular lipases and directly converting the extracellular triacylglycerol oils and fats into high‐value products. It is believed that the cell size and morphology of the Y. lipolytica is related to the cell growth, nutrient uptake, and product formation. Dimorphic Y. lipolytica demonstrates the yeast‐to‐hypha transition in response to the extracellular environments and genetic background. Yeast‐to‐hyphal transition regulating genes, such as YlBEM1, YlMHY1 and YlZNC1 and so forth, have been identified to involve as major transcriptional factors that control morphology transition in Y. lipolytica. The connection of the cell polarization including cell cycle and the dimorphic transition with the cell size and morphology in Y. lipolytica adapting to new growth are reviewed and discussed. This review also summarizes the general and advanced genetic tools that are used to build a Y. lipolytica biomanufacturing platform.
The United States produces more than 10 million tons of waste oils and fats each year. This paper aims to establish a new biomanufacturing platform that converts waste oils or fats into a series of value‐added products. Our research employs the oleaginous yeast Yarrowia lipolytica as a case study for citric acid (CA) production from waste oils. First, we conducted the computational fluid dynamics (CFD) simulation of the bioreactor system and identified that the extracellular mixing and mass transfer is the first limiting factor of an oil fermentation process due to the insolubility of oil in water. Based on the CFD simulation results, the bioreactor design and operating conditions were optimized and successfully enhanced oil uptake and bioconversion in fed‐batch fermentation experiments. After that, we investigated the impacts of cell morphology on oil uptake, intracellular lipid accumulation, and CA formation by overexpressing and deleting the MHY1 gene in the wild type Y. lipolytica ATCC20362. Fairly good linear correlations (R2 > 0.82) were achieved between cell morphology and productivities of biomass, lipid, and CA. Finally, fermentation kinetics with both glucose and oil substrates were compared and the oil fermentation process was carefully evaluated. Our study suggests that waste oils or fats can be economical feedstocks for biomanufacturing of many high‐value products.
Asymmetric transformations arising from iminium activation of aromatic aldehydes are uncommon. In this work, an enantioselective organocatalytic domino aza‐Michael–Henry reaction between N‐(2‐formylphenyl)sulfonamides and trans‐β‐nitro olefins through iminium activation has been presented. This reaction proceeded smoothly to give chiral 3‐nitro‐1,2‐dihydroquinolines in high yields with up to 88 % ee under mild conditions. Furthermore, a preliminary study showed that 2‐mercaptobenzaldehyde derivatives could participate in a thia‐Michael–Henry reaction with trans‐β‐nitro olefins to yield chiral 3‐nitro‐2H‐thiochromenes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.